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Abstract  
Many systemic design processes include the development and analysis of systems models that 
represent the issue(s) at hand. In causal loop diagram models, phenomena are graphed as 
nodes, with connections between them indicating a control relationship. Such models provide 
mechanisms for stakeholder collaboration, problem finding and generative insight and are 
powerful resources when presenting a visual argument. These functions are valued in design 
thinking, but the potential of these models may yet be unfulfilled. We introduce the notion of 
“leverage measures” to systemic design, adapting techniques from social network analysis and 
systems dynamics to uncover key structures, relationships and latent leverage positions of 
modelled phenomena. We demonstrate their utility in a pilot study. By rethinking the logics of 
leverage, we can make better arguments for change and find the place from which to move the 
world. 
 
Keywords: systemic design, leverage points, centrality analysis, structural analysis, social 
network, causal loop diagrams. 
 
 
Introduction  
The practice of systemic design offers tools and approaches that can help find leverage for 
change decisions anticipated to produce a desired impact within complex system problems. 
Complex social systems, as any complex systems, often produce emergent, counterintuitive 
behaviour that is impossible to predict by examining the parts or the individual phenomena 
(Forrester, 1971). By using models to capture and illustrate how these phenomena interdepend 
on one another, we may gain the ability to grasp such emergent behaviour. More importantly, 
we may be able to identify leverage points, the places within a system where a small shift 
produces a big change (Meadows, 1997). In pursuit of better ways to find leverage, we offer 
the following three contributions: We highlight how tools from graph theory (the mathematical 
study of structured relations between objects; Ruohonen, 2013) may be useful in the analysis 
of systemic design models. We bring together several such tools under a unified approach in 
what we call “leverage analysis” and introduce a set of leverage measures and their definitions 
for analysing systemic design models. Finally, we demonstrate how these tools may be used to 
explore the logics of leverage in a pilot study. 

Why do leverage points matter? To demonstrate the physical principles of a simple 
lever, Archimedes famously said, “Give me a place to stand, and with a lever I shall move the 
whole world” (“Archimedes,” n.d.; cf. Tzetzes & Kiessling, 1826, for an earlier Greek version). 
In truth, the place he would have needed to stand is about 3.8 trillion light years away (or 40x 
the size of the observable universe),1 but his statement was nonetheless moving. More 
importantly, it is an excellent illustration that the choice of where to act from is as significant 
as the choice to take action. In fact, the choice of where to stand may matter more than the force 
applied in the act itself.  

Systems scientists have developed several approaches to defining and cataloguing 
sociotechnical complexity in large-scale social systemic contexts. Many refer, for example, to 
the concept of “wicked problems,” proposed by Rittel and Webber in Dilemmas in a General 
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Theory of Planning (1973), in which they articulated ten observations consistent with “wicked” 
or intractable, irreducible problems that resist solutions or linear resolutions. Problems of a 
“wicked” nature have been described as messes (Ackoff, 1997), ill-structured problems 
(Mitroff, et al, 1982) and continuous critical problems (Özbekhan, 1969). Özbekhan (1970) 
developed a comprehensive – though, he admits, incomplete – list of 49 such problems for the 
Predicament of Mankind prospectus for the Club of Rome,2 building on the list of 28 
documented in the earlier cited work. These problematic contexts all are conceived as sharing 
the following common attributes: their irreducibility into component issues, their continuous 
and adaptive configuration over time, their intractability to problem-solving approaches and so 
on.  

Despite our best efforts and intentions, no matter what actions we take, wicked problems 
often appear to be unyielding. Challenges such as ending homelessness, preventing climate 
change and eliminating discrimination all fall in this class of problem, as do many more at every 
scale, industry and locale. Countless individuals and organisations – also of every scale, 
industry and locale – have attempted to tackle these problems, but progress seems to happen at 
a rate disproportionate to effort. When it comes to wicked problems, moving towards solutions 
is akin to moving the Earth – there is a clear need to find leverage in order to ensure our efforts 
are effective and efficient. 

 
Finding leverage in systemic design  
The practitioners of systemic design hope to offer tools and approaches that could help us find 
leverage. Systemic design has contributed hybrid practices that combine the formal modelling 
of complex systems thinking with the investigative and creative capacities of design thinking 
(Jones, 2014). Indeed, systems thinkers have often asked, “Why, often despite our best efforts, 
have we been unable to achieve a certain goal or solve a particular problem?” (Stroh, 2015, p. 
92), a direct inquiry into the apparent lack of success by the other efforts described above. Using 
the processes of systemic design, wicked problems can be understood through more coherent 
narratives because hybrid visualisations and strategic interventions can be modelled as well as 
designed and tested. 

The properties of complex systems (and of how people engage with them) nonetheless 
present a number of issues that introduce bias and chance into the process of intervening in 
systems (Norman & Stappers, 2015). Systemic design tools produce models, and “all models 
are wrong” (Box, 1976). Further, while some principles and processes exist (Jones, 2014), 
developing models, identifying leverage points and designing solutions tends to happen by 
“muddling through” a problem (Norman & Stappers, 2015; see also Simon, 1996).  

Systemic design models vary in type. Designers may create systems thinking models 
whose purpose is to describe the system as comprehensively as possible (Forrester, 1994; 
Checkland, 1985). Models of so-called “soft” systems often take the form of causal loop 
diagrams (CLDs), in which phenomena are graphed as nodes with connections between them 
indicating an influencing relationship. Within systemic design, synthesis maps (Jones & Bowes, 
2017) are used for visualising complex social systems that incorporate models and formalisms, 
as well as GIGAmaps, wherein systems are mapped out generatively and described across many 
complex layers and scales (Sevaldson, 2011). Alternatively, designers may quantify the 
phenomena of a system’s variables through techniques from system dynamics (these techniques 
are also known as “hard” or “semi-structured” approaches; Forrester, 1994). These models may 
then be interpreted and used to identify points of potential leverage, the “places within a 
complex system . . . where a small shift in one thing can produce big changes in everything” 
(Meadows, 1997, p. 1).  

The discipline of systemic design, and the use of modelling, is particularly suited to 
finding and emphasizing leverage points as these points are frequently counterintuitive. As 
Meadows (1997) argues, they may not only be hard to identify and isolate in a system, but 
stakeholders are often working to address leverage points by pushing them in the wrong 
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direction. Systemic designers work with stakeholders to understand the whole system and 
reveal its counterintuitive structures and dynamics, and the resulting models (e.g. CLDs) 
provide a way to visually argue the significance of the discovered leverage points and the 
directions in which these phenomena should be pushed.  

The different approaches to modelling come with important trade-offs which are yet to 
be reconciled in modern methods. Systems thinking models are representative, but their insights 
may be invalid or inaccurate (Forrester, 1994). Also, system dynamics models are robustly 
analytical, but we may be analysing an ill-developed or reductive representation of the problem 
system (Checkland, 1985). Further, in order to develop representative models, systemic 
designers must draw on diverse stakeholders to ensure that perspectival variety and appropriate 
representations are legitimated (Jones, 2014; Stroh, 2015). Due to the development of recent 
technologies and practices such as crowdsourcing (participatory systems that involve publics 
in collaborative projects; Lukyanenko & Parsons, 2012) and data science (a set of techniques 
and theories that help distil insight from data; Provost & Fawcett, 2013), the collection and 
organising of large amounts of data has become commonplace. This brings us to an important 
tension (see Maass et al., 2018). Larger, more complex data-driven models are likely to be more 
representative as they capture more perspectives and nuances than simpler models and as their 
representations can be tested through the simulations and analysis of systems dynamics. 
However, these models are also harder to learn, understand and use (Rossi & Brinkkemper, 
1996).  

Systemic designers must find ways of balancing the trade-offs between complex 
representational validity and what we might call ease-of-insight. In this paper we illustrate how 
techniques from graph theory and systems dynamics can be used to take advantage of the 
structural properties of systemic design models’ elements and connections to algorithmically 
identify leverage points in these models. These techniques make it easier to take advantage of 
big data in systemic design and advance our capacity to muddle through wicked problems 
(Rittel & Webber, 1973). 

In the next subsection, we briefly introduce graph theory. In section two, we introduce 
the concepts and metrics of centrality analysis and of structural analysis and their applications 
in systemic design. In section three, we demonstrate their utility in a pilot study. Section four 
discusses the implications of these ideas and presents our conclusions. 
 
The potential of graph theory 
For the purposes of this paper, we present a simplistic discussion of the formalisms of graph 
theory to help the reader understand the workings of leverage analysis. We avoid delving into 
the explanation and justification of the formal concepts, choosing instead to refer the reader to 
sources where these concepts have been demonstrated in analytical disciplines. The technical 
details of the implementation of these concepts have been well-defined in these papers, and our 
goal is to map their utility to productive directions in systemic design.  

A graph is formally defined as a set of vertices and edges and can be seen as a 
relationship between a node (vertex) and its connecting edges. An edge is defined as a pair of 
vertices where each vertex in the pair terminates the edge (Ruohonen, 2013). In network 
analysis, vertices correspond with the members of the social network, and edges with the 
connections between them. Using these concepts in systems, we call vertices elements (the 
phenomena of the system) and their edges connections (how these phenomena influence one 
another). In graph theory, a walk (or a path) is a sequence of elements and their connections 
that begins at a given element and traverses a given connection to the next element, continuing 
until a given end element is identified. A walk that returns to the starting element is considered 
a closed walk and is called a cycle. In systems science, however, a cycle is called a feedback 
loop. 

The formalism of a graph as a pair of sets of vertices and edges allows us to represent a 
graph in matrix form in what is called an adjacency matrix, where each column and row 
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represent the elements of a system. The number “1” in a column-row intersection indicates that 
there is a directed connection from the row element of the intersection to the column (Oliva, 
2004). “0” indicates no such connection exists. We will return to the concept of the adjacency 
matrix in the next section, when it becomes useful in partitioning system models, that is 
decomposing models into useful subcomponents and their relationships.  

How may we use these concepts to analyse CLDs? Beck et al. (2012) propose four 
matrix-based approaches to analysing systems dynamics phenomena as sets of variables. They 
define four variants of matrices that evaluate the relationships between the variables and the 
system they are structured within. Schoenenberger et al. (2014) return to these methods to 
examine a systems model of terrorism. Le Blanc (2015) examines the indicators of the United 
Nations’ Sustainable Development Goals as a network of interconnected phenomena and uses 
some simple network measures to analyse how these indicators relate to one another. Mohr 
(2016) builds on Le Blanc to introduce several additional measures from social network 
analysis. Earlier work by one of the present authors (Murphy, 2016) use some social network 
analysis measures on a CLD as a proof-of-concept to elevate the discussion of leverage points 
in a systemic design project. Potts et al. (2017) introduce graph theory analysis methods in their 
exploration of systems engineering architectures. Finally, in a separate line of research, Oliva 
and other researchers examine the graph structure of systems dynamics in terms of levels of 
causality and the nesting of loops (Duggan & Oliva, 2013; Kampmann & Oliva, 2006, 2008; 
Oliva, 2003, 2004, 2018; Saleh et al., 2010).  

These papers serve as inspiration for the current project. However, none of these 
projects contextualise the analysis within the discipline of systemic design, nor do they relate 
their ideas to the search for leverage points. They also leave gaps between centrality and 
structural analysis. This paper presents three contributions: it brings these methods together for 
the first time, links this approach to systemic design and relates the use of these analyses to the 
search for leverage points.  
 
Background: Graph centrality and structure 
We start by explicating the most common and relevant centrality measures and models for 
structural analysis. This elementary background can be considered minimally necessary for 
understanding the potential applications of network and centrality analysis in complex social 
systems. 
 
Centrality analysis 
Graph theory can be explored through its relevance to multiple adjacent disciplines via the study 
of social networks. Based on theoretical origins in formal sociology (Carrington & Scott, 2011), 
social network studies aim to understand the shape and characteristics of social structures 
composed of individuals and their relations. Sociologists interested in the complex divisions 
within American minority communities turned to network analysis as a way of mapping the 
network of social relations in these communities. Systems scientist John Warfield conducted 
policy research by employing interpretive structural modelling (digraph influence maps) for 
social network analysis in complex social domain analysis. A significant early study describes 
the modelling of community assets in underprivileged urban communities in Dayton, Ohio (Fitz 
& Troha, 1977). This led to what is now known as social network analysis (Carrington & Scott, 
2011). Warfield’s (1974) interpretive structural modeling (ISM) algorithm was further 
developed for use as the network modeling methodology for the multi-stakeholder decision-
making process known as Interactive Management. Today, the process is convened as 
Structured Dialogic Design, a multiple-facilitator decision-making process using the ISM 
algorithm in a web-based system employed in systemic design practice. 

Social network analysis involves the modelling and measurement of the connections 
between people and organisations in a directed graph, where people and organisations are 
represented by nodes and connections are represented by vertices (Carrington & Scott, 2011). 
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By measuring the structure of these networks – say, how densely coupled they are, or how 
central a given node may be – we can make important observations about the nature of the 
network as a whole. Based on the representations of behaviour in the network, social network 
analysis also enables scoping out very specific data-supported attributes of individuals, 
allowing researchers to determine central figures, gatekeepers and other roles of importance in 
the network (Freeman, 1979). 

We can likewise treat a CLD representing a modelled system as a directed graph of 
phenomena and their connections, using the algorithms of social network analysis to measure 
the centrality of the phenomena. This analysis allows a systemic designer to identify important 
phenomena quickly and objectively (relative to the structure of the graph) regardless of the size 
or complexity of the map. 

Many types of centrality analysis exist (see Newman, 2010, for a comprehensive 
resource on network analysis). Below, we profile a set of key centrality formalisms relevant to 
our applications to examine networks of phenomena. Each formalism is offered with a reference 
for further information. The reference is not necessarily the origin of the measure, nor is it the 
definitive resource, as centrality measures are well-documented, and extensive literature exists 
describing these formalisms in various ways. The list of formal types below is also not intended 
to be a complete set; a key direction for further research is to continue exploring available 
formal models to evaluate their utility to systemic design problems.  

It is crucial to note that these measures do not supplant one another; researchers in 
centrality analysis have not determined that there is, say, a most-central measure. Each measure 
examines different but related aspects of a network structure and therefore offers different uses. 
It is up to the user of the metrics to examine the measures and the models they are analysing 
and to interpret the results. The challenge of interpretation becomes, we might say, a design 
problem. 

 
Degree (Newman, 2010) 
Degree centrality is a simple measure of the number of connections: How many edges does the 
vertex have? As a basic measure of importance, a vertex with a higher degree is more connected 
to the rest of the network than an element of a lower degree. For directed edges, there are two 
sub-variants of degree: indegree (the number of incoming connections) and outdegree (the 
number of outgoing connections). In social networks, the indegree is a good indicator of 
popularity, representing a high number of people who communicate to the given member. 
Outdegree is an indicator of gregariousness, showing someone who communicates to a large 
number of people in the network. See Figure 1 for an illustration of degree, indegree, and 
outdegree centrality. 
 
Betweenness (Freeman, 1979) 
Betweenness measures how often a given vertex lies on the shortest path between two other 
elements. It is calculated by counting the number of shortest paths from vertex a to vertex b in 
a network, dividing the number of those paths that pass through the given vertex by the total 
and then summing those values for all possible pairs of nodes in the network.  

In a social network, a high betweenness is a good indicator that the given member has 
ready access and possibly extensive control over the network. Such members might serve the 
function of gatekeepers by regulating access to higher-status members. Consider how 
gatekeepers can halt the spread of a rumour: To stop a rumour from spreading with minimal 
effort, we should intervene on members of the network with high betweenness values.  
 
Closeness (Freeman, 1979) 
How close is a given vertex to every other vertex in the graph? Closeness is the reciprocal of 
the average length of the shortest paths between the given vertex and every other vertex in the 
graph.  
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High closeness is an indication of the network’s dependence on the given member. An example 
of a family is illustrative: The member that the family depends on is likely to have a high 
closeness value. This is also an indication of communication efficiency: In an extended family, 
if you want to propagate news, you tell a grandparent as they are probably close to all the aunts 
and uncles as well as the grandchildren and cousins. 
 
 

 
Figure 1. A simple network illustrating the degree, indegree and outdegree measures. 
 
 
Eigenvector (Newman, 2010) 
A vertex that is well-connected by any metric may seem to have high centrality, but it may be 
well-connected to weakly-connected elements. Eigenvector centrality recognises that not all 
neighbouring vertices are equivalent in terms of centrality and assesses whether the given vertex 
is well-connected to other well-connected elements. 

Eigenvector centrality is found by summing the relative eigenvector centrality scores of 
all the neighbours of an element; it is therefore calculated iteratively as an estimate. 

As eigenvector centrality is an indicator of how well-connected a given element is to 
other well-connected elements, it is a potent measure of importance. Indeed, Google’s famous 
PageRank algorithm implements eigenvector centrality (Newman, 2010, p. 707).  

However, eigenvector centrality suffers a problem in directed graphs. According to 
Newman (2010), it only measures strong connectivity and hence may not be a good indicator 
of implicit leverage: “Only vertices that are in a strongly connected component of two or more 
vertices, or the out-component of such a component, can have non-zero eigenvector centrality” 
(p. 172).  
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This fact is relevant to our analysis of CLDs and shall be discussed as we further apply these 
metrics to systemic design. 
 
Reach (Hanneman & Riddle, 2005) 
Reach is the proportion of the network within k steps of a given vertex; by convention, k is 
usually 2.  

How much of the network is within the “reach” of a given element? In a social network, 
a member with high reach is likely to be capable of quickly spreading information. Reachability 
is also a good indicator of potential (undiscovered) leverage as a vertex with higher reach than 
others has a larger directed network in which influence can be exerted. 
 
Reach efficiency (Hanneman & Riddle, 2005) 
Reach efficiency is calculated by dividing the reach of a vertex by its size (the degree of the 
vertex plus one, in order to count itself in the size).  

How efficiently can a given vertex reach the rest of the network? High reach efficiency 
is an indication that the member can connect with much of the network with little effort. If a 
member of a network only has redundant contacts – people they already know, or those they 
can reach through different parallel connections – then this member will have low reach 
efficiency. 

 
Eccentricity (Hanneman & Riddle, 2005; Oliva, 2004) 
A vertex’s eccentricity is the length of the longest of the shortest paths to every other vertex in 
the graph. In other words, how far away is the furthest vertex, at minimum? Eccentricity has 
several properties. The vertex with the smallest eccentricity is in the “centre” of the graph, and 
the eccentricity value of that vertex is said to be the graph’s radius. 

A high relative eccentricity, in other words, indicates a substantial distance from the 
graph’s centre. A member’s minimal centrality indicates proximity to the centre of the network 
– membership, perhaps, in the clique that holds the broader group together. 

 
Notes on centrality metrics 
As has been discussed, we can use the above metrics to calculate the centrality or “importance” 
of elements by assessing how a given element is connected to the rest of the graph (Freeman, 
1979). All of the above measures are relative per-element metrics. That is, they provide values 
to a given member based on how they relate to the rest of the network. It is possible to use 
network analysis to measure the network as a whole (e.g. the number of elements/connections 
in the model may be a potent indicator of its complexity). However, as our interest is in 
determining which phenomena are the most important leverage points in a systems model, we 
will leave examining the system itself outside of the scope of the present research. 
 
Structural analysis 
In addition to centrality, another school of analysis examines the structure of the cycles found 
in graphs. Known as structural dominance analysis or simply structural analysis, this method 
was developed to help analysts partition and test system dynamics models (Oliva, 2004). Recall 
that systems dynamics models use rate and equation modelling drawn from real-world data. 
Due to the nature of the phenomena modelled with systems work, it can be challenging to 
actually measure and integrate these real-world measures into a model. Oliva’s motivation was 
to find a way to decompose dynamics models such that what the data designers had access to 
could be used in the best way possible. However, these techniques have been constrained to 
systems dynamics; therefore, their utility to help analyse systems thinking models remains 
untapped.  

Structural analysis involves identifying and measuring the structure of systems’ 
feedback loops as cycles in the model (Oliva, 2004; see also Kampmann, 1996, and Warfield, 
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1989). By doing so, analysts can develop partitions of the levels and cycles of the graph, 
enabling them to isolate and understand the causal nature of the model’s subsystems (Oliva, 
2004). In other words, we may be able to use these measures to illustrate a hierarchy of causality 
in systemic phenomena. We further note three powerful methods described by Oliva (2004) for 
analysing influence and intervention in systems dynamics as these methods might be applicable 
in resolving design decisions for complex social phenomena. 

 
Level partitioning 
Level partitioning helps analysis by identifying levels of influence in a complex structure by 
using a reachability matrix (a matrix whereby an entry of “1” in a row/column intersection 
indicates that the vertex represented by the row can reach (via a walk) the vertex represented 
by the column). A reachability matrix can then be partitioned into blocks grouping the vertices 
that depend on the same variables. Then, we can identify variable “levels” that correspond to 
reach or influence across a network.  

Importantly, the variables in a feedback loop are at the same level because – by the 
definition of a feedback loop – there is no causal precedence, and thus all phenomena 
represented by this loop cause one another. 

In systems dynamics, level partitioning results in a clear hierarchy of the causal structure 
captured by the model. This technique allows us to specify the dependency of variables on each 
other. Variables at the top level are often outcome variables, while those at the bottom-most 
level are the least embedded, but often the highest-impact ones, within the complex causality 
of a system.  

 
Cycle partitioning 
Cycle partitioning addresses the lack of specificity in defining related vertices within feedback 
loops. We can partition the reachability matrix defined above by grouping together vertices that 
share the same set of predecessors and successors; these variables are a cycle set. This cycle 
partition is a strongly connected graph – it is possible to walk from each variable to every other 
variable.  

A cycle set is not that useful on its own. In many system models, due to the nature of 
the system, main cycle sets account for a large proportion of the modelled variables. Because, 
as described above, all variables in this set are at the same level, the set does not give us new 
knowledge until its structure is further analysed. 

Two graph theory concepts are useful for this analysis (in the context of the present 
research). The first is a geodetic circuit. A circuit is a cycle in which vertices may be repeated 
(whereas, in a cycle, vertices cannot repeat). A geodetic circuit is the shortest possible circuit 
in which two given vertices participate. The second concept is an independent loop set (ILS): a 
set of loops beginning with a given loop and adding a new loop to the set if and only if the 
candidate loop contains an edge not yet included in the loops of the set. Oliva (2004) expands 
this model by only considering the geodetic circuits of the graph as candidates for the loop set. 
This modified version is called the shortest independent loop set (SILS). These loop sets can 
yield high-potential design options for intervention, redesign or, if warranted, integration with 
other defined problem sets. 

 
Considerations for leverage analysis 
How can we translate the above measures and techniques into useful tools for analysing soft 
social systems in systemic design proposals? It is necessary to consider some disclaimers before 
we begin.  

First, there is a difference between the domains normally used for social network 
analysis and the messy (unstructured and unstructurable) problems of systemic design. For 
instance, models of social networks show the flows of communication or connection between 
people and organisations. Systemic design models often show flows of “change” through 
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pathways, human activity journeys and complex processes. Network analysis reveals the 
potential for change through communicative action between participants in the network. But 
centrality is not a measure of change or flow in the social system. Change and activity are 
complex multicausal phenomena and obviously have no standard measurement unit. For 
example, how does a shift in police violence against racialised people influence how racialised 
people perceive the justice system? We know that it does, but characterising the connection 
between these phenomena further is a complex task. Thus, we should be cautious when we use 
network analysis techniques to examine the target phenomena of systemic design in social 
systems. 

Second, there may be a role for the weighting and thresholds of connections and 
elements. The degree of change in one element may be very slow, for instance, while in another 
it may be very fast; an investment of time, effort, and resources in changing one phenomenon 
may be disproportionately costly to an investment in another. These intricacies are difficult to 
model. Finding ways to do so may be worthy of future research. 

Ultimately, we cannot eliminate the role of interpretation from these models. We can, 
however, help systemic design studies and system maps parse complex models, identify 
potential key phenomena and ensure completeness. With these concerns in mind, in the 
following section we translate the centrality and structural analysis techniques discussed above 
into what we call leverage measures for application in systemic design.  
 
Leverage Measures 
Table 1 illustrates the proposed translations of the techniques of centrality and structural 
analysis into leverage measures for systemic design. A more robust discussion of each 
measure follows. 
 
 
Table 1. Centrality and Structural Measures Mapped to Leverage Measures 
 

 
Definition Systems function Leverage measures in 

systemic design 

Degree The number of connections. Higher connectivity to the 
rest of the network; 
influence, access, prestige 
(Newman, 2010). 

Immediate impact, 
sensitivity, resilience. 

Indegree The number of incoming 
connections. 

High inward connectivity 
to the rest of the network; 
sensitivity to information, 
influence (Newman, 
2010). 

Receives change or 
influence from many other 
nodes; may be highly 
volatile or highly stable. 

Outdegree The number of outgoing 
connections. 

High outward connectivity 
to the rest of the network; 
rapid communication and 
access to the network, 
highly “contagious” 
(Newman, 2010). 

Change in the given 
phenomena is felt by many 
other nodes in the 
network; high impact, 
power. 

Betweenness Frequency of participation in 
the shortest path between two 
other elements. 

Member has a high 
degree of control; the 
network is dependent on 
the member; 
bottlenecking, control, 
influence (Freeman, 
1979). 

Phenomenon is a gate 
point or a bottleneck; 
change strategies must 
consider bypasses or 
strategies to prevent 
blocking. 
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Definition Systems function Leverage measures in 

systemic design 

Closeness Average length of the shortest 
paths between the given 
vertex and every other vertex 
in the graph. 

High visibility to the rest of 
the network, information 
spreads easily from this 
node; independence from 
the rest of the graph 
(Freeman, 1979). 

High-closeness nodes hold 
cohesion and power; likely 
to be resistant to change, 
and therefore a central 
locus to enable success or 
a failure point for change 
strategy. 

Eigenvector Connectedness to other well-
connected elements. 

Influence of highly 
influential elements; 
influence (Newman, 
2010). 

High-impact nodes and 
pathways; likely key points 
of leverage in pursuit of a 
given strategy. 

Reach The number of elements 
within [x] steps of the given 
element. 

Quick propagation of 
information through the 
network; widely accessible 
(Warfield, 2001; 
Hanneman & Riddle, 
2005). 

The measure is highly 
sensitive to deeper-placed 
elements that exhibit reach 
across the network. 
Reachability was 
Warfield’s (2001) simplest 
effective measure of 
complexity in onterpretive 
structural modelling, a 
digraph network model.  

Reach 
efficiency 

The reach divided by the 
degree of a given node. 

Efficient (non-redundant) 
information spreading; 
high exposure with limited 
influence on the given 
element (Hanneman & 
Riddle, 2005). 

Quickly and efficiently 
propagate change 
throughout the rest of the 
network; is not likely to be 
highly influenced by the 
rest of the system. 

Eccentricity 
 

The distance measure of the 
furthest node. 

Minimal eccentricity 
indicates the centre of the 
graph (Hanneman & 
Riddle, 2005; Oliva, 
2004). 

Localisation of outcome or 
intervention; target 
“neighbourhoods” of 
salient phenomena. 

Level partition Which variables are 
dependent on which? 

Hierarchy of causal 
structure (Oliva, 2004). 

Elements at the “bottom” 
of the hierarchy are 
uncontrollable within the 
system; elements at the 
top are highly dependent 
on the rest of the system. 

Cycle partition Which other variables share 
the same set of 
predecessors/successors? 

Illustrates cycle set 
“dominance” → sub-cycle 
sets must be understood 
before their “parents” 
(Oliva, 2004). 

Sub-cycle set elements 
dictate the behaviour of 
supercycles. 

Shortest 
independent 
loop set 

A decomposition of the cycle 
partition showing how loops 
are embedded within loop 
sets. 

Illustrates a loop 
hierarchy. With level 
partitioning, shows 
ordering from simple loops 
to complex loops; shows 
isolated loop structures 
(Oliva, 2004). 

Simple loops are easier to 
experiment with than more 
complex loops. Inner loops 
will influence the behaviour 
of their containing loops; 
isolated structures are 
more easily manipulated. 

 
 
Analysis pilot study 
Can leverage analysis support policymakers and “changemakers” (Rahman et al., 2016) in their 
pursuit of systemic change? To explore the utility of these measures, we conducted a pilot study 
using an existing model of an education system (Murphy, 2016). That model was previously 
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used to identify opportunities for education system change in the Canadian province of 
Newfoundland and Labrador. The model was a CLD3 that represented the system of education 
curricula changes. It was built to provide strategic information for a change strategy whose 
purpose was to introduce innovation skills into the public-school systems at all levels of formal 
education. (Thus, the model contains many references to innovation. These references can 
likely be swapped by any other curricular goal, and the system will be structurally equivalent.)  

As with most sociotechnical systems (Emery & Trist, 1960; Gharajedaghi, 2011), the 
forces influencing curriculum outcomes in the Newfoundland and Labrador education system 
were quite dynamic. Moreover, outside of the established players (e.g. teachers’ unions and 
government ministries), many of the actors of the system had limited resources with which to 
stage an intervention. Changemakers should therefore strive to root their strategies – theories 
of change (see Annie E. Casey Foundation, 2004) – in changes that yield important shifts for 
the economy of efforts required. In the case of the Innovation Education project, the actors 
sought to identify the best way to cultivate innovation skills as part of the Newfoundland and 
Labrador public education outcomes.  

A model of the system was developed through secondary research. The model was not 
overly complex, containing 30 elements and 49 connections between them. Nonetheless, this 
was sufficient complexity to make the model difficult to interpret at a glance. A small 
organisation might be able to use the model to inform change strategies, but this use requires 
intuitive, substantial interpretation of the model structure and dynamics. Such interpretation can 
be difficult, even for those practiced in systems (Sterman, 2009). Leverage analysis measures 
present an opportunity to augment that intuitive interpretation. As an exploration of the utility 
of these measures, we examine the model developed for Murphy (2016) with the leverage 
analysis measures described above. We then interpret the results and discuss whether the 
proposed measures provided the expected results.  
 
Study apparatus 
The model is built and maintained on Kumu (http://kumu.io), a web application supporting 
systems mapping and social network analysis. Kumu has implemented the centrality measures 
discussed above (except for eccentricity, which remains untested in this pilot study). 
Unfortunately, Kumu’s implementation of these algorithms is not public, so we cannot report 
on the exact approach to calculating relative centrality values used in the pilot study. For 
exploratory purposes, however, the results are still provided, and as the measures are relative 
to the structure of the modelled system, the analyses possible through Kumu will suffice to 
illustrate the ideas presented above. 

 
Procedure 
We first used Kumu’s built-in algorithms to calculate the centrality values for each element for 
the metrics described above. Second, we followed the procedures detailed by Oliva (2004) to 
examine the level and cycle partitions of the model. Finally, we reviewed the resulting centrality 
values, level partitions and cycle partitions. We present our interpretation of the results 
according to our experience with the problem domain below. 
 
Analysis results 
Structural leverage analysis 
The partitioning resulted in two levels, of which the bottom included only five of the 30 
elements in the model. In no particular order, they were as follows: 

• Generational shifts in work. 
• Innovation learning from outside of the public education system. 
• Accessible and practical models for innovation education. 
• Other calls for reform. 
• Low price of oil. 
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As suggested by Oliva (2004), the model’s initial level partition was not useful. Taken for 
granted, this analysis implies that these five phenomena are completely independent forces in 
the world. For most of the phenomena, however, the opposite is true: “Low price of oil,” 
“other calls for reform” and “generational shifts in work” are three phenomena that emerge 
from massively complex systems and histories, and defining such models was simply outside 
of the scope of the model, a result of boundary framing. However, the other two phenomena 
both deal with injecting innovation learning from outside of the extant system. It makes sense 
that these do not depend on anything within the system. Their independence may make them a 
useful point from which to implement a change strategy.  

The remaining 25 elements can be decomposed into a SILS containing 18 separate 
loops. The loop inclusion graph for these 18 separate loops is presented below (Figure 2). It 
shows that 13 of the loops are independent, located at the same bottommost level. The 
remaining five loops form the core structure of the model. These loops are illustrated and 
labelled in Figures 3 to 6.  
 
 
 

 
 

Figure 2. The loop inclusion graph of the innovation education model. Cycle levels are indicated on the 
left of the diagram. 
 
 
 
The core loop of this structure is therefore loop 3 (Figure 3), a loop describing how a poor 
definition of innovation is self-perpetuating. This loop is nested within loops 2 (Figure 4), 4 
(Figure 5), 17 (Figure 7) and 18 (Figure 8), making it the most contained loop of the model. 
This is intuitive, as definitions play a major role in how an issue is discussed and, therefore, 
how policies are made. From a leverage perspective, then, influencing loop 3 means influencing 
several other key feedback loops of the system.  
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Figure 5. Loop 4: Innovation 
reinforces innovation. 

Figure 3. Loop 3: Perpetually poor definition of 
innovation. 

Figure 4. Loop 2: Innovation conflation (with R&D). 

Figure 6. Loop 18: Driving reform. 

Figure 7. Loop 17: Resource-dependent 
economy. 
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Centrality leverage analysis 
The top three phenomena on each of the centrality indicators are reported in Table 2. We 
provide comments on a few of the results of particular metrics below. 
 
 
Table 2. Ranked results of centrality leverage analysis of phenomena in innovation education. Note: 
The results are reported in descending order with the highest value items on the left. Values for the 
respective metric reported in parentheses. Phenomena have been colour-coded for ease of identifying 
the same phenomena across the table. 

Degree Innovation education (8) 
Recognition of 
innovation skill 
deficiency (7) 

K-12 curricula reform for 
innovation education (7) 

Indegree K-12 curricula reform for better 
innovation education (6) 

Innovation education 
(6) 

Recognition of innovation 
skill deficiency (5) 

Outdegree Innovation capacity (4) 

Provincial government pressure to reform (3), 
independent actor calls for innovation education 
reform (3), austerity limiting new program 
development (3), lack of emphasis on innovation 
skills and competencies (3) 

Betweenness Innovation capacity (.47) Innovation education 
(.454) 

Recognition of innovation 
skill deficiency (.298) 

Closeness Lack of emphasis on innovation 
skills and competencies (.359) 

Innovation capacity 
(.337) 

Innovation learning from 
outside the public 
education system (.308) 

Eigenvector Innovation education (.121) Innovation capacity 
(.083) 

Perceived innovation gap 
(0.073) 

Reach Lack of emphasis on innovation 
skills and competencies (0.367) 

Innovation capacity 
(.3) 

Recognition of innovation 
skill deficiency (0.267) 

Reach 
efficiency 

Innovation learning from outside the 
public education system (0.078) 

Lack of emphasis on 
innovation skills and 
competencies (0.073) 

Low price of oil (0.067) 

 
 

We proposed that high-degree elements would be important signals of change, lead indicators 
of systemic effects. Indeed, the results seem to demonstrate this notion. Increased levels of 
“innovation education,” “recognition of innovation skill deficiency” and “K-12 reform for 
better innovation education” would each be a clear sign that change was taking root. This could 
be contrasted with, say, the “need for innovation skills” or the “definition of innovation skills 
and competencies.” These are hand-picked examples, of course, but the fact that the measure 
ranked these elements highly is a qualitative (if weak) indication that our hypothesized 
understanding of degree measures was accurate. The third element, “K-12 reform for better 
innovation education”, is particularly apt. In Newfoundland and Labrador, the education system 
is regularly criticized for being slow to change (Fagan, 1995). If reform were to actually take 
place, it is an obvious sign that progress is taking root. 

We suggested that betweenness would indicate a bottleneck. Indeed, “innovation 
capacity” and “innovation education” were clear winners, and, again, this reflects a qualitative 
truth of the system. These phenomena represent our ability to actually practice the skills 
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themselves and then to teach them to students. Since these concepts are fundamental to both 
defining what innovation is and to teaching it, we must ensure we have the appropriate 
capacities in place. “Recognition of innovation skill deficiency” is ranked third, and it also 
makes sense that this is a bottleneck. If we knew about innovation only in the abstract but failed 
to notice that we were ineffective because of inexperience, we might not even try to implement 
reforms to resolve the deficiency. 

We proposed that high closeness values would show resilience, which should be 
reflected in phenomena that are slow or difficult to change. Interestingly, while we would argue 
that the top two phenomena on this measure clearly reflect this tendency, the third-ranked 
phenomenon – “innovation learning from outside the public education system” – is less 
intuitive. This phenomenon should be easy and quick to introduce into the system as it does not 
depend on the other systemic factors that we have mapped; arguably, anyone can start an 
initiative that, for example, provides innovation learning to teachers or students. To explain this 
inconsistency, we returned to the original definitions of closeness as discussed by Freeman 
(1979). Note that closeness also indicates independence from the rest of the graph. Indeed, as 
described above, this notion of extra-curricular innovation learning is systemically independent. 
It is not controlled by any public entity nor influenced by any other part of the system. Thus, 
the results of this pilot study prompt us to refine our definition of closeness as a leverage 
measure. High closeness elements may be resilient and therefore difficult to change, as we 
suggested earlier. “Lack of emphasis on innovation skills and competencies” and “innovation 
capacity” are both phenomena that may be slow to show results, even if a high level of program 
activity is occurring throughout the educational system. However, high closeness elements may 
also be independent forces, uninfluenced by the rest of the system. This insight is practically 
useful. In the case of “innovation learning from outside the public education system,” this 
independence is double-edged: it is easy for anyone to introduce extra-curricular innovation 
lessons, but it may be difficult for that initiative to integrate with the rest of the system (e.g. it 
could be challenging for such an initiative to gain legitimacy or scale and therefore it may fail 
to reach many teachers or students). 

The eigenvector metric should highlight the “most favorable” leverage points in the 
model: phenomena which, if changed a little, would trigger a cascade of impacts throughout 
the rest of the system. The results of the pilot study reflect this conceptualisation of an 
eigenvector measure. “Innovation education,” the kernel of the model itself, and “innovation 
capacity” are the top two results. Indeed, if an actor could directly influence either of these 
phenomena, it is intuitive that the rest of the mapped system would respond powerfully to these 
changes. The difficulty, of course, is that these are significant and complex programs in 
themselves, and it would be a challenge for any actor to act on them directly. The metric’s third-
ranked phenomenon is the “perceived innovation gap,” whether or not society recognises that 
we are not performing as well on innovation as we should be. Indeed, alarm and agreement 
across the system that we are failing at innovation is likely to raise awareness and incite change 
rapidly. Instead of beginning a campaign to encourage innovation learning by engaging directly 
with schools or departments of education, an actor might instead start by emphasizing a region’s 
innovation weaknesses in the public discourse.4 By increasing recognition of the gap, other 
actors may align to help solve the problem, yielding multiplicative returns on effort. In sum, 
eigenvector analysis shows high-yield opportunities for leveraged action within the system. 
While the first two elements were somewhat obvious, the third was not, demonstrating the 
potential usefulness of this measure to a systemic design team looking to create change in this 
system.  

We proposed that reach measures should emphasise the phenomena that the mapped 
system is sensitive to; a change in high-reach phenomena will propagate to other phenomena 
across the system. The phenomenon “lack of emphasis on innovation skills and competencies” 
is ranked first by this measure. This phenomenon represents awareness-raising. Thus, the more 
society knows about innovation skills, the more it will consider their importance. Intuitively, 
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this is a phenomenon that the rest of the system is sensitive to: if innovation skills are suddenly 
recognised in, say, public examinations, via a prolific scholarship, other phenomena in the 
system are likely to change to adapt. This argument extends to “innovation capacity” and 
“recognition of innovation skill deficiency” as well.  

Finally, we suggested that reach efficiency would highlight elements that are points of 
efficient impact: that is, that shifts in highly reach-efficient phenomena would be observed more 
rapidly in other phenomena in the system than shifts in phenomena with low reach efficiency. 
The first two results reflect an accurate assessment of this idea. “Innovation learning from 
outside the public education system” should be easy to implement (systemically speaking) but 
have broad impact. The “lack of emphasis on innovation skills and competencies” likewise 
represents a phenomenon that should be easy to influence – a press campaign, for example, 
profiling how to practice innovation skills – and, if successful, would result in ripple effects 
throughout the system. The third choice, “low price of oil,” is blatantly incorrect, but it is hard 
to fault the algorithm (the modeller simply underconceptualised the issue and failed to 
sufficiently model the relational complexity of oil prices). One possible approach to deal with 
this issue in general is to only calculate centrality leverage analysis on the elements of each 
level of the model (as indicated by level partitioning). This would prevent confusion by 
interpreting the results of these metrics based on elements with only outward connections.5 

 
Discussion and conclusion 
Leverage analysis presents a powerful opportunity for systemic designers to form stronger 
design proposals for complex system interventions as it provides a quantitative, analytical 
rationale for intervention decisions based on empirical observations (or at least transparently 
sourced data). The value is not that the methodology provides a “quantitative” analysis as such, 
as we are not advocating a positivist or reductive approach to independent analysis of complex 
systems. Qualitative, knowledgeable judgments are, in fact, required to select the appropriate 
nodes and data and to ascertain scores that assign values in the measures. The value for decision 
making is that graph modelling reveals the strengths and weaknesses in an analysis based on 
comparable reference models, enabling policy or advising teams to make well-supported claims 
for investment within change programs. 
 
Contributions to systemic design 
As a methodology adapted from “hard” systems dynamics and graph theory, leverage analysis 
can be introduced into qualitative and critical systems approaches as a way to examine the space 
for design options. Cultivating centrality and structural leverage analysis methods within 
systemic design accelerates a group’s ability to gain insight into wicked or continuous critical 
problems. Conventional CLDs often fall far short of constructing effective arguments as they 
depend entirely on the skill of the modeller in identifying appropriate variables and drawing out 
critical relationships for possible action.  

CLDs are customarily used to argue for a salient reinforcing dynamic interpreted as 
significant or problematic by stakeholders. We know from research on group decision-making 
dysfunctions that stakeholders acting on interests commonly manifest the erroneous priorities 
effect (Christakis & Dye, 2008), whereby individuals search and advocate for preferred 
outcomes rather than efficient leverage to achieve those outcomes. Erroneous priorities are 
resolved by using structural leverage analysis to demonstrate the higher impact of demonstrated 
points of leverage. Drawing on stakeholder knowledge, we can assess reachability, reach 
efficiency leverage, highly connected betweenness barriers or high-impact eigenvector 
relationships within a social system network. Leverage analysis reduces the risk of significant 
design-program investment as we can determine the relative contribution of impact between 
options.  
 By reframing these techniques as relevant to systemic design, we hope to motivate more 
researchers and practitioners to see the potential of these measures for analytically parsing 
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complex system problems. Structural leverage analysis adds a rich dimensionality to these 
otherwise flat and inscrutable CLDs, while centrality leverage analysis offers a quick way of 
emphasising structurally important phenomena. Most importantly, these measures help 
systemic designers do what they are meant to do: interpret the models, with all the experience 
and domain knowledge they bring, to find strategic opportunities for desired change in order to 
achieve preferred future outcomes. 

On a related front, leverage measures offer a new way for systemic designers to take 
advantage of emerging technologies. At a big data scale, data-driven modelling would be 
difficult to do using conventional systemic design mapping. Leverage measures offer systemic 
designers modern ways to parse, reframe and restructure their models, including the “big” ones.  

A side-effect of the use of leverage measures is the requirement to digitalise models. 
Many systemic design models and GIGAmaps are captured and presented in static form, meant 
to represent a comprehensive understanding of complexity but not necessarily to enable 
ongoing, dynamic work with the model. Leverage analysis mandates an action-oriented 
representation of the system, potentially enabling new representations and entrees to decision 
analysis in design and action research.  

At the same time, these measures re-centre the purpose of models in systemic design 
work. At the beginning, we discussed some of the challenges of systemic design, such as the 
tensions between “hard” and “soft” modelling approaches and between the representativeness 
of simple models and the ease of generating insights from them. Conventional models are 
perhaps most useful in visual arguments. Presenting the complexity of a problem to 
stakeholders is an effective way that allows them to see their own contributions to the problem’s 
complexity, to align decisions around a common consensus for action and to help stakeholders 
observe the unseen dynamics that cause the problem to persist and escalate.  

To share models with stakeholders, however, we must often simplify, extract or 
otherwise reduce complexity in order to gain ease-of-insight, especially for model users new to 
systemic design logics. Leverage measures allow us to call this reductive tendency into question 
by emphasising the importance of the whole system and the integrity of its metadata – that is, 
the structure of the system used in leverage analysis. Using both leverage analytics and 
designerly visualisations may be the best way to stand between these core problems of systemic 
design and to “muddle through” their trade-offs. 

The pilot study we conducted helped to refine the measures we have proposed. By 
running structural and centrality leverage analyses and critically examining the results in a 
system we are familiar with, we were able to check our earlier definitions against real-world 
phenomena. This resulted in some alterations; we present a final set of leverage measures below 
(Tables 3 and 4).  

 
Discussion of analysis formalisms 
A few centrality leverage measures seem especially important to note. Eigenvector analysis is 
an intuitive exaptation of the concept of leverage points. It may be that the results of eigenvector 
analysis should be the first step that systemic design teams discuss when they move towards 
strategising solutions. Identifying potential bottlenecks with the betweenness measure also 
appears to be a powerful tool in order to ensure that potential bottlenecks are addressed by a 
change strategy. Reachability and reach efficiency are useful in demonstrating the potential 
speed of change in a network and the range of options or actors touched by a change proposal. 
Many directed graphs demonstrate path-dependency, and reach across the entire set of paths 
and cycles is critical in any change proposal.  

The notion of leverage measures in general is an underdeveloped approach, worth 
further application in systemic design studies. Are there other, better ways for measuring the 
leverage we have in a well-bounded social system? What principles may be applied in assessing 
whether a given change strategy has appropriate leverage or not? Ought there to be leverage 
thresholds for investing in change proposals, whereby a low-leverage, “first order” policy or 
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project might be scrutinised for its systemic effects before approval or award? This is an 
exciting development that deserves further exploration in design action research. Below, we 
briefly discuss the implications of each of the leverage measures we have translated for systemic 
design and summarise the measures in Tables 3 and 4. 

 
Level partitioning 
Elements at the first level of the causal hierarchy are dependent on everything else. These 
elements may therefore be difficult to influence deliberately, even if they have high values 
according to other metrics. Elements at the lowest levels are the most external. These are likely 
more tractable to intervention opportunities. 
 
Cycle partitioning and the SILS 
What phenomena are inseparable from which feedback loops? Used in combination with loop 
inclusion and further level partitioning techniques, cycle partitioning can reveal the feedback 
structure of the model. Core feedback loops – those contained within all of the others – are 
likely the most important to influence. Likewise, loop hierarchies isolated from one another 
may be experimented with differentially. 
 
Degree 
A high-degree phenomenon is likely to be an important signal in the system. Systemic designers 
may hypothesise how high-degree phenomena should change according to a given intervention 
and set up lead indicators to determine whether or not the intervention is having the systemic 
impact they thought it would. Phenomena with high indegree may be particularly useful 
“signal” phenomena, and the rapidity of change in these phenomena may be an indication of 
the system’s overall volatility. High-outdegree phenomena conversely influence many others, 
and outdegree is therefore a rudimentary measure of potential impact or power.  
 
Betweenness 
High-betweenness phenomena are liable to be gateways for change. These bottlenecks must be 
accounted for in change strategies as substantial impact may be dampened by a lack of foresight 
or engagement with these phenomena. 
 
Closeness 
High closeness values indicate resilience or independence. High-closeness phenomena are not 
likely to change easily in response to events elsewhere in the system, nor will changes in these 
phenomena easily propagate elsewhere. These phenomena may therefore be important barriers 
to resolve as part of a change strategy. They are also key lag indicators of systemic change as 
they aggregate shifts happening elsewhere in the system. 
 
Eigenvector 
What influences the influential? Eigenvector analysis reveals high-impact phenomena. These 
are potentially the true leverage points in the system, as, by definition, the impact made on high-
eigenvector phenomena will influence other high-impact phenomena. 
 
Reach 
The system itself is sensitive to elements with high reach values. Changes implemented in these 
phenomena are likely to influence the rest of the system, if shallowly. 
 
Reach efficiency 
Efficient impact. Change propagates from high-reach-efficiency elements without redundancy. 
It may be strategic to target several reach-efficient elements that are eccentric to one another. 
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Eccentricity 
Eccentricity may be most valuable relative to the goal phenomena of the systemic design 
project. Where in the system are these goals? If goal phenomena are highly eccentric, perhaps 
it would be best to remodel the system with an eye for phenomena close to the goal. 

Alternatively, when identifying opportunities for intervention, it may be worth taking 
eccentricity into account with other measures. A phenomenon that seems more powerful but is 
far away from the centre could be less strategic than a “weaker” one that is close to the heart of 
the system. 
 

 
Table 3. Structural Leverage Measures and Their Use in Interpreting Systemic Design Models. 

 
Description Use in systemic design 

Level partition Which phenomena are 
dependent on which? 

Use level partitioning to detect the phenomena that are 
uncontrollable from within the system (those at the bottom of 
the hierarchy) and those that are highly dependent on the 
system (top of the hierarchy). 

Cycle partition Which other phenomena 
share the same set of 
predecessors/successors? 

Use cycle partitioning to differentiate core phenomena and 
feedback loops from broader phenomena and feedback loops: 

- Sub-cycle phenomena and inner loops likely 
dominant the behaviour of supercycle phenomena 
and outer loops. 

- Simple loops are easier to experiment with; isolated 
structures are more easily manipulated without 
interference from the rest of the system. 

Shortest 
independent 
loop set 

A decomposition of the cycle 
partition showing which loops 
are included in which. 

 
 

Table 4. Centrality Leverage Measures and Their Use in Interpreting Systemic Design Models. 
 

Description Use in systemic design 

Degree The number of connections Changes to high-degree phenomena will translate more 
quickly to more phenomena; high-degree phenomena are 
more sensitive to changes throughout the system. 

Indegree The number of incoming 
connections 

High-indegree phenomena receive change from many other 
elements; they are indicators of systemic change and 
representative of the system’s volatility. 

Outdegree The number of outgoing 
connections 

Changes to high-outdegree phenomena are felt by many other 
elements. 

Betweenness Frequency of participation in 
the shortest path between two 
other elements 

High-betweenness phenomena are gateways or bottlenecks 
for change; change strategies must consider how to address 
these gateways. 

Closeness Average length of the shortest 
paths between the given 
vertex and every other vertex 
in the graph 

High-closeness phenomena are resilient or independent, 
resisting change coming from elsewhere in the system; 
likewise, the system may resist change coming from these 
phenomena. 

Eigenvector Connectedness to other well-
connected elements 

High-eigenvector phenomena are powerful; these are good 
candidates for leverage across the rest of the system. 

Reach The number of elements 
within [x] steps of the given 
element 

High-reach phenomena connect deeply to the rest of the 
system; change in these phenomena will be felt by other 
relatively disconnected elements. 
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Reach 
efficiency 

The reach divided by the 
degree of a given node 

High-reach-efficiency phenomena quickly and efficiently 
propagate change throughout the rest of the network. 

Eccentricity 
 

The distance away of the 
furthest node 

High-eccentricity phenomena are far away from others, 
implying localisation of outcome or intervention; eccentricity 
may be used to structure and target “neighbourhoods” of 
phenomena that are structurally close together. 

 
 
The pilot study also helped demonstrate the practical utility of leverage measures to systemic 
design decisions for intervention planning or change programs. These measures can provide 
important strategic insights for a team intent on creating change in a complex problem. For 
example, the following steps provide a potential approach to using these analyses in developing 
a high–leverage change strategy:  

• Adapt network analysis and present findings from leverage analysis along with other 
systems research for design program decision making and for planning best-value and 
highest-impact interventions. 

• Reformat centrality formalisms into visualisations that present the decision options for 
possible interventions while maintaining data-set validity for further reference.  

• Conduct structural leverage analysis to detect levels, subset and superset structures and 
feedback loops in the system.  

• Conduct centrality leverage analysis, particularly eigenvector, betweenness, closeness 
and reach efficiency values, for mapped phenomena. 

• Find high-eigenvector phenomena at core structural locations in the system (e.g. at low 
levels and in inner loops). These relationships are powerful discriminators of leverage 
and, if they can be influenced, may yield significant change effects across the system. 

• Find reach-efficient nodes (functions) that influence those high-eigenvector nodes as 
directly as possible. Develop strategies to change these reach-efficient functions that 
will lead to change in the targeted high-eigenvector nodes. 

• Identify high-betweenness and high-closeness phenomena and map their potential 
influence on the reach-efficient and high-eigenvector phenomena identified by analysis 
or research. Develop a strategy to prevent these bottlenecks and resistant phenomena 
from impeding the planned interventions or change program.  
 

 
Limitations 
Clearly, these proposed metrics deserve further scrutiny beyond our pilot project. It should be 
possible to test hypotheses on these ideas. For instance, a modeller or a modelling team could 
examine a domain and develop a model and then assess it with the leverage measures. Expert 
reviewers could be asked questions (e.g., “Which are the key bottlenecks to reform in this 
issue?”) about the domain relating to the proposed leverage measures. After these responses are 
coded, the reviewers’ suggestions could be compared with the results of leverage analysis to 
see if experts’ insights are reflected by the analysis.  

Second, as the pilot study demonstrated, the need for interpretation is ever-present. The 
results of these analyses cannot be accepted without critical examination and stakeholder 
consultation. In other words, these techniques do not present systemic designers with the ability 
to craft a high-leverage change strategy at the touch of a button. Nonetheless, we can direct 
what the interpreter interprets. Structural and centrality analysis offers an easy way to provide 
emphasis, changing what catches the systemic designer’s attention.  
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Further research 
A number of remaining issues deserve attention in future research.  
 
Ontological guidelines for mapping and normalisation 
The way in which models are researched and designed is not necessarily standardised. 
Designers, decision makers and stakeholders will hold varying mental models regarding the 
appropriate choices and value assignments for any social system or model. Experience and 
knowledge will vary, often widely, relevant to the phenomena under analysis. These issues may 
be alleviated with ontological guidelines (essentially, multistakeholder perspective selection) 
or even a defined script for guiding the selection of systemic design proposals within system 
models. 
 
Guidelines for design, interpretation and use 
While we have done our best to provide plain guidance on leverage measures, this format is 
still not ideal for practitioner consumption. Work must be done to translate these ideas into 
practice. 
 
Explore additional metrics 
As discussed earlier in this paper, many more metrics exist that deal with analysing the structure 
of graphs. For instance, Borgatti (2005) develops some ideas around how information actually 
flows in social networks. These ideas may apply to the flows of change between phenomena in 
systems. Xie et al. (2011) profile a set of community detection algorithms used to detect the 
divisions of social networks into separate social groups. These concepts may relate to new ways 
to structure and decompose systemic phenomena. Finally, Schoenenberger et al. (2015) propose 
a methodology to algorithmically detect different systems archetypes based on the structure of 
CLDs. This relates directly to the objectives of the current research and should be integrated 
into the leverage measures framework. 
 
Weighted metrics and algorithms to implement them 
It is possible to combine centrality measures. For instance, the Kumu algorithms can be 
employed to calculate reach efficiency weighted by eigenvector values. If combined metrics 
could be clarified and developed with respect to the leverage measures framework, it may be 
the most powerful way to immediately calculate clear leverage points based on a given model 
(e.g. eigenvector-weighted reach efficient phenomena may be high-influence, high-efficiency 
intervention points). 
 
Linking methods 
The formal relations and structures emphasised by the methods presented in this paper might 
be even more useful when embedded in other systemic design methods, such as synthesis maps 
(Jones & Bowes, 2017) or Gigamaps (Sevaldson, 2011). Synthesis maps in particular build 
visualisations and system narratives from multiple representations and formalisms based on 
evidence or stakeholder data. Mapping leverage along timelines or strategic pathways would 
significantly increase the effectiveness of synthesis maps developed for policy and planning 
scenarios. Visual presentation of centrality and structural leverage analysis would also be useful 
in structured dialogic design (SDD). SDD (Christakis & Bausch, 2006) is a mixed-methods 
approach to engage high-variance, multiple-organisation stakeholders in dialogue, using 
software based on Warfield’s algorithms to present acyclic graphs to identity leverage within 
complex problem systems (Jones, 2018). SDD uses pairwise voting to form progressive 
structural models that display a collectively-voted influence map as a representation of the 
group’s decision making. Additional centrality analysis techniques have often been considered 
in the 50 years of dialogic design practice, and the integration of network visualisation could 
provide significant new value.  
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Systems dynamics versus systems thinking: From dichotomy to spectrum? 
In the introduction, we framed differences between system dynamics and systems thinking as 
a substantial divide. It may be that these tools can help bridge the gap between the hard, 
quantitative approaches of systems dynamics and the soft, messy problems of systems thinking. 
If this is the case, a divide does not exist at all; rather, work in these two disciplines happens 
along a spectrum. Choosing the appropriate place on the spectrum to investigate a given 
problem then becomes a key decision in the systemic design process. This deserves further 
thought. 
 
Conclusion 
This paper has served three objectives: to unite different analytical approaches in order to 
understand modelled systems, to contextualise these approaches in the discipline of systemic 
design and to articulate these formalisms as leverage measures in order to develop effective 
change strategies for complex problems. Simply by discussing the different aspects of 
structural and centrality leverage analysis of systems with respect to systemic design, we hope 
to have achieved the first and second objectives. By translating different measures from these 
approaches into a list of leverage measures, we believe we have achieved the third. Extensive 
work remains both to critique this work and to extend it. The potential for augmenting the 
methodological contribution and effectiveness of systemic design is, nonetheless, 
considerable. 
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Notes 

1 For some attempts at calculating where Archimedes would have needed to stand, see the following discussion 
on Reddit: 
https://www.reddit.com/r/theydidthemath/comments/3zvuap/request_archimedes_once_said_give_me_a_place_t
o/  
2 Özbekhan’s prospectus to the Club of Rome, The Predicament of Mankind, was the basis for later proposals, 
even though his proposal was rejected. Instead, Meadows et al.’s world model analysis was accepted by the Club 
of Rome, which resulted in the well-known Limits to Growth.  
3 The CLD developed and analysed in this study can be found and interacted with online at 
https://kumu.io/systemicdesign/centrality-and-structural-analysis 
4 Interestingly, this is the effect of the University of Toronto Impact Centre’s Narwhal Report, which provides 
year-over-year comparisons of Canadian start-up business successes (https://www.impactcentre.ca/narwhal/). 
5 We thank Dr. W. Kubiak for this suggestion. 

 


