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Abstract 
Introduction: A patient having a chest X-ray will inevitably be exposed to radiation from the 

primary beam. Using a light beam diaphragm (LBD) on the X-ray tube reduces scattered 

radiation at the X-ray tube through longitudinal and horizontal collimation. But not 

scattered secondary radiation resulting from interactions of the primary beam. This study 

aimed to investigate whether lead protection on simulated hospital ward inpatients 

(opposite and adjacent to a simulated chest X-ray examination) would change the secondary 

scattered radiation dose received. 

Materials and methods: Three phantoms (simulated patients) were used, phantom A 

received the primary beam, and the other two received scattered radiation (positioned at 

different distances from the simulated patient receiving the chest X-ray). Phantom B was 

positioned one metre adjacent (to the side of phantom A being X-rayed), and phantom C 

was two metres opposite phantom A. The scattered radiation dose to radiosensitive organs 

(thyroid, breast, and gonads) was recorded using Thermoluminescent Dosimeters (TLDs). Six 

exposures were conducted, three with lead protection and three without. The mean 
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radiation dose and standard deviation were compared using a paired two-sample t-test for 

statistical significance (p>0.05). 

Results: The lead protection reduced the radiation dose to the radiosensitive organs by 

64%-100% (p=0.51-0.18) one metre adjacent and 65%-100% (p=0.65-0.18) two metres 

opposite. Noticeably the phantom two metres opposite had substantial individual organ 

dose reductions due to the distance from the primary beam. 

Conclusion: Lead aprons, thyroid collars, and distance reduced the radiation dose to the 

radiosensitive organs of the surrounding phantoms (simulated patients) from an adjacent 

chest X-ray examination and present opportunities for dose reduction techniques during 

ward chest X-ray examinations.  

Introduction 
Patients receive radiation doses in the radiology department from direct medical imaging 

examinations emitting ionising radiation and indirectly through scattered radiation from 

adjacent medical imaging examinations in inpatient ward environments.  

The United Kingdom (UK) Ionising Radiation (Medical Exposure) Regulation (IR(ME)R),1 

advises everybody but the patient should vacate the exposure area during an X-ray 

examination. This includes doctors, nurses, and patients’ families to avoid unnecessary 

radiation exposure. Often during inpatient ward chest X-ray examinations, the surrounding 

or adjacent hospital beds have patients that are unable to leave the area due to their 

medical conditions; in this scenario, the radiographer has to Justify the examination and 

optimise and limit radiation to reduce the stochastic risk of ionising radiation to patients.2 

Both forward and back scattered secondary radiation3 can significantly contribute to patient 

dose4 (skin tissue and internal organ). However, the transmission of scattered secondary 

radiation is omnidirectional, with diagnostic X-ray imaging photons scattering at large 

angles,5 with significant doses recorded from the back, forward, and 45-degree oblique 

directions from chest X-ray energies.6,7 

Most X-ray transmission studies have concentrated on how the exposures from chest X-rays 

affect the image quality,8–11 with few studies on the transmission of secondary radiation at 

adult chest X-ray doses. Burrage, Rampart, and Beeson12 previously measured secondary 

scattered radiation from newborn infant chest X-rays using an anthropomorphic phantom 

and found the scatter at 1 metre (m) from the patient being X-rayed to be low (0.1 

micrograys (µGy), with similar results by Trinh, Schoenfeld, and Levin13 of scattered 

radiation at 90 degrees and 135 degrees from newborn infants.  

The study aimed to measure the radiation dose received by immobile adult inpatients on 

beds adjacent and opposite to an adult patient having a ward-simulated Anterior-Posterior 

(AP) chest X-ray examination at set distances with and without lead protection. The study 

will test the null hypothesis of no change in radiation dose between wearing and not 
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wearing lead protection in adjacent and opposite inpatients. The alternative hypothesis is a 

change in adjacent and opposite inpatient radiation dose between wearing lead protection 

and not wearing lead protection. 

Methods 
An ethical application and risk assessment were approved by the University Ethics Panel 

(ETH21-22/S19RPR). The study was completed in a university X-ray laboratory. Local 

radiation rules were followed and approved by the university's radiation protection 

supervisor. Quality assurance14 was conducted on all X-ray equipment before commencing 

to ensure no radiation leakage from the X-ray tube housing, collimators, or Dose Area 

Product (DAP) meter attached to the X-ray tube housing contributed to the scatter.15,16 

Calibration  

The study used n=30 lithium fluoride Thermoluminescent Dosimeters17 (TLDs), which were 

annealed using an electric annealing oven18  heated to 242 degrees Celsius (oC) for 10 

minutes, then cooled to 80oC for 20 minutes, before step cooling to room temperature; 

before irradiation to release any previously stored energy.19 The TLDs were then placed on a 

tissue equivalent material (to minimise low energy Compton X-ray backscatter19) and 

irradiated using an X-ray tube20 with an exposure protocol of 125 Kilovoltage (kV), 1.4 

milliampere-seconds (mAs), a large focal spot, collimation of 35x43 centimetres (cm), and a 

Source to Image Detector (SID) of 183 cm. Post irradiation, the TLDs were transported to a 

TLD nitrogen reader21,22 and heated to 50oC to remove the low-temperature stored energy 

peaks before rapid heating to 240oC to measure the high energy glow peaks23 recorded in 

Nanocoulombs units (nC) before annealing to reuse.24,25 The TLDs were grouped according 

to sensitivity26, 27 to compensate for minor manufacturing variations23, 24and put into 

batches of n=3 TLDs for each radiosensitive anatomical area being measured on the 

Alderson anthropomorphic Rando phantoms,28 and for background room radiation. 

Phantom set-up 

An AP chest X-ray simulated the positioning of a ward mobile examination (Patient A) using 

an X-ray tube20  and an AGFA Direct Digital Radiography plate29 shown in figure 1. The 

exposure parameters used 125 kV, 1.4 mAs, a large focal spot, collimation of 35x43cm, and 

a SID of 183cm, the same as the TLD calibration. The Alderson Rando anthropomorphic 

phantoms,28 constructed for radiation dosimetry studies, were used as patients B and C. 

Rando anthropomorphic phantoms28 used to collect dose measurements were patient B 

phantom (was male, 175cm tall 73.5kg weight; figure 2) and patient C phantom (female 

without the added breast tissue, 155cm tall, 50kg weight; figure 3) are transected-

horizontally (2.5cm slices for insertion of TLDs into specific internal tissue and organ areas) 

and made from tissue-equivalent (bone, soft tissue, and lung equivalent) material with 

characteristics that provide a physical representation of normal human biological 

anatomy.30 The phantom (Simulated patient) A receiving the chest x-ray (Adam, Rouilly, UK, 
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AR10A31 adult life size, with surface anatomy and internal representations of bones and 

organs, figure 4). 

 

Figure 1. Phantom (simulated patients A, B and C) simulated ward bed positioning from the 

X-ray tube. 

Phantom (simulated patient) B was positioned one metre adjacent to the left of phantom 

(simulated patient) A and 45 degrees from the X-ray source, and phantom (simulated 

patient) C was positioned two metres opposite phantom (simulated patient) A, imitating a 

clinical ward setting (figure 1) with and without lead apron (ProtecX Medical, UK. One-Piece 

Regular Lead Apron32) was 0.25 lead equivalence, with thyroid collar (ProtecX Medical, UK. 

Thyroid Collar33) 0.35 lead equivalence. 

Patient B and C’s radiation doses were recorded using batches of n=3 TLDs placed into 

reusable, re-sealable small plastic zip storage bags and positioned on the anterior skin 

surface of the radiosensitive organs34 of the thyroid, breast, and testes to record the 

Entrance Skin Dose (ESD) and internally for the ovaries.  
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Figure 2. Patient B without Lead protection with TLDs attached to the radiosensitive organs. 

 
Figure 3. Patient C without lead protection, with TLDs attached to the radiosensitive organs. 
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Figure 4. Patient B and C with lead aprons and lead thyroid collars. 

Dose measurement 

Six exposures were completed; after each exposure, the TLDs were kept in order of 

anatomical region, read and annealed in the TLD reader26 with the dose in nC recorded, 

then replaced in the same order and anatomical region for the subsequent exposure. For 

the first three exposures, patients B and C were without a lead apron32 and thyroid collar33 

(figures 2 and 3). For the last three exposures, patients B and C wore a lead apron32 and 

thyroid collar33 (figure 4). The background radiation dose was recorded by a batch of n=3 

TLDs for each exposure, at the X-ray control panel, and for consistency and comparison, this 

was recorded at multiple intervals and areas around the X-ray room at positions of 

phantoms A, B, and C. 

The TLD lightcounts (nC) of the absorbed radiation energy, minus the background TLD dose, 

were converted to absorbed dose units (µGy)26,35 in Microsoft Excel36 before calculating the 

descriptive statistics of mean and standard deviation (SD) of each batch of n=3 TLDs for each 

anatomical organ (with and without lead protection32,33). Statistical analysis of the radiation 

doses calculated the dose difference (with and without lead protection32,33) with descriptive 

statistics of mean and SD, and inferential statistics of a parametric paired two-sample t-test 

to determine statistical significance using a p-value37 (p > 0.05) between the mean 

ESD/absorbed dose (interval data) for phantom organ and tissue TLD measurements with 

and without lead protection32,33 (paired sample).38 
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Results  

The radiation dose recorded for Patient B, situated one metre to the left of Patient A, 

measured significant change when wearing a lead apron32/thyroid collar33 as opposed to no 

lead protection (figure 5). The thyroid dose was reduced by 64-71% (7.65– 3.34 µGy; p=0.51-

0.46, table 1), the breast dose was reduced by 85-92% (1.74 - 0.83  µGy; p=0.47-0.34), with 

the ovaries and testes displaying a 100% (0.00 µGy p=0.42-0.18) dose reduction (table 1). 

However, it is accepted that these dose levels are clinically low. 

Table 1. Absorbed organ and tissue dose data from simulated patients (phantoms B and C). 

 

 

 

Figure 5. Comparison of with and without lead shielding in absorbed dose at 1m adjacent 

positioning. 
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B Right Thyroid 43.36 9.25 11.31 21.31 0.00 8.39 14.58 7.65 13.66 25.8 64.1% -0.92 p=0.46 

B Left Thyroid 28.87 0.00 5.89 11.58 0.00 0.00 10.02 3.34 8.24 17.9 71.2% -0.79 p=0.51 

B Right Breast 32.73 0.00 0.00 10.90 0.00 0.00 2.51 0.83 10.07 19.6 92.4% -0.89 p=0.47 

B Left Breast 26.93 0.59 8.75 12.09 0.00 0.00 5.24 1.74 10.35 14.4 85.6% -1.24 p=0.34 

B Right Ovaries 40.78 7.51 20.64 22.98 0.00 3.22 1.26 1.49 21.49 18.3 93.5% -2.03 p=0.18 

B Left Ovaries 7.05 0.00 0.00 2.34 0.00 0.00 0.00 0.00 2.34 4.0 100% -1 p=0.42 

B Right Testes 24.98 0.00 2.81 9.26 0.00 0.00 0.00 0.00 9.26 13.6 100% -1.17 p=0.36 

B Left Testes 31.38 0.00 0.00 10.46 0.00 0.00 0.00 0.00 10.46 18.1 100% -1 p=0.42 

C Right Thyroid 22.96 0.00 0.00 7.65 0.00 0.00 0.00 0.00 7.65 13.2 100% -1 p=0.42 

C Left Thyroid 13.02 0.00 2.28 5.10 0.00 0.00 0.00 0.00 5.10 6.9 100% -1.27 p=0.33 

C Right Breast 12.95 11.98 0.00 8.31 0.00 0.00 0.00 0.00 8.31 7.2 100% -1.99 p=0.18 

C Left Breast 32.69 0.00 0.00 10.90 0.00 0.00 0.00 0.00 10.90 18.8 100% -1 p=0.42 

C Right Ovaries 14.66 0.00 3.77 6.14 0.00 0.00 0.00 0.00 6.14 7.6 100% -1.40 p=0.29 

C Left Ovaries 9.96 0.00 0.00 3.32 0.00 0.00 0.00 0.00 3.32 5.7 100% -1 p=0.42 

C Right Testes 10.62 0.00 0.00 3.54 0.00 3.73 0.00 1.24 2.3 7.4 65% -0.53 p=0.65 

C Left Testes 15.97 0.00 0.00 5.32 0.00 0.00 0.00 0.00 5.32 9.2 100% -1 p=0.42 
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The radiation dose recorded for Patient C, situated two metres opposite Patient A, displayed similar 

changes when wearing a lead apron32 and thyroid collar33 as opposed to no lead protection (figure 6). 

 

 

Figure 6. Comparison of with and without lead shielding in absorbed dose at 2 m opposite 

positioning.  

 

The reduction wearing the lead apron32/thyroid collar33 protection measured at the thyroid, 

breast, and ovaries was 100% (0.00 µGy; p=0.42-0.18). The testes were 65-100% (1.24 – 0.00 

µGy; p=0.65-0.42), which reflected when the distance from the primary beam was over two 

metres; the sensitivity of the TLDs picked up mostly noise and minimal radiation dose (table 

1). This limitation aside, the results reject the null hypothesis of no change between wearing 

and not wearing lead protection, even at two metres. The paired t-test results infer that the 

two samples (lead apron32,33/no-lead apron) are not equal at one and two metres, and there 

is a change (lower) in the dose received when wearing lead protection. 

Discussion 
X-rays have become an integral and indispensable part of diagnosis and intervention within 

healthcare.39 Studies have shown that even a low dose exposure to ionising radiation can 

risk stochastic effects of developing cancer, and no amount of radiation dose can be 

considered safe.40 Unnecessary and repeat radiation exposure would therefore be a hazard 

for inpatients receiving secondary scattered radiation doses in a hospital ward. 

Studies have been conducted regarding how much protection radiography staff need from 

exposure to scattered secondary radiation during working hours.41–43 Medical ward staff do 

not require personal dosimeters to monitor radiation exposure or protection if vacating 

from the radiation area whilst the ward X-ray is being performed.44 However, there is a 

paucity of published studies on the amount of radiation exposure inpatients receive during 

their stay in a hospital. Therefore, this experiment could potentially benefit clinical practice 

regarding radiation protection for inpatients from portable X-rays conducted in a ward. 
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According to the UK Government,45 the estimated dose per annum of background radiation 

a member of the public would receive is around 2.7 millisievert (mSv) (2700 µGy). The 

recommended UK safe amount of radiation dose received per year resulting from the 

medical exposure of someone else is 5 mSv (5000 µGy). Equivalent 15 mSv (15000 µGy) to 

the eye lens, 50 mSv (50000 µGy) to the extremities, and 50 mSv (50000 µGy) to the skin 

(averaged over an area of 1cm2).14  It is estimated that nurses in intensive care Unit (ICU) 

ward with routine chest X-rays would receive a detectable dose of around 0.05mSv (50 µGy) 

per two-month period,44 over a year, which would be below dose limits. 

Although different manufacturers' portable X-ray machines will emit different levels of 

scattered radiation and intensity of scatter.44 It is recommended that radiographers who 

routinely perform must portable X-rays wear lead shielding, and where safety permits, 

patients should distance themselves from the source of radiation, a distance of at least two 

metres,44 and as this study has evidenced, if available, wear lead shielding. Lead aprons are 

a widely utilised shielding method for limiting ionising radiation to patients and staff by up 

to 75% to radiosensitive organs;46 due to their density and atomic number.   

A study by Johansen et al.47 identified that using alternative lead-free forms of radiographic 

aprons also offers high X-ray absorption. Conventional lead aprons weigh approximately 7kg 

making the standard apron heavy. Alternative lead-free aprons are currently being made 20-

40% (-4kg) lighter due to the material used (tungsten, tin, barium, and antimony), which are 

as protective from radiation,48 lighter and reduce musculoskeletal and back problems. These 

alternative aprons could benefit inpatients during a portable X-ray due to their lightness. 

Likewise, Radiographers should adhere to IR(ME)R1 policies and procedures of keeping 

exposure factors ‘as low as reasonably practicable’ (ALARP1) when exposing radiation to a 

patient in a ward setting and collimating field size to the region of interest. 

Other basic protective measures used in radiation safety to achieve an ALARP1 radiation 

dose is distance, i.e. how far from the radiation source a patient is.  According to the inverse 

square law49, exposure at a distance from the point of radiation is inversely proportional to 

the square of the distance. Doubling the distance between the radiation source (X-ray 

patient) and inpatients will yield one quarter of the radiation; tripling the distance will 

achieve one-ninth of the radiation dose.49  

There are opportunities for future researchers to explore alternative ways to eliminate 

scattered secondary radiation to an inpatient laying opposite and adjacent to a portable X-

ray. Hayre et al.46  have debated whether patients should rotate their head or body 90 

degrees from the primary beam to limit and reduce the effects of secondary scattered 

ionising radiation. 

The study findings within laboratory conditions presented in this study require future 

research within clinical hospital environments to confirm the findings. Variations of 

exposure factors used in ward chest X-ray imaging and manufacturer X-ray equipment will 



Patient radiation dose received from a chest X-ray   

22 

vary results. As such, these findings are directly related to the equipment used in this study. 

However, these findings can assist the radiographer with local decision-making in hospital 

environments for ALARP x-raying of patients on wards with surrounding patients.  

The phantoms used in this study were generic adult samples, therefore a limitation to the 

study’s results is the acknowledgment that the inpatient on hospital wards vary by sex and 

age, and as such the radiogenic risk of stochastic effects will vary with patients’ age-specifics 

and sex-dependent.50 Noting that the age-dependent stochastic health effects and 

radiosensitive organ and tissue-dose-based radiation risk coefficients from X-rays will be 

higher in children and lower in senior adults,50 and possibly the cancer mortality risk would 

vary by ethnicity as well.50 Recommendations for future studies to assess factors that may 

contribute to the increased radiogenic risk of stochastic effects should also include the 

Length of Stay (LOS) of a patient on a hospital ward and the number of ward chest X-ray 

examinations.51,52 

Conclusion 
Ionising radiation can lead to stochastic effects on patients through primary and secondary 

radiation exposure. This study has demonstrated in laboratory settings that using lead 

protection on surrounding and adjacent inpatients during a chest X-ray examination can 

reduce the radiation dose to inpatients. 

Statistical data analysis demonstrated shielding and distance reduced scattered secondary 

radiation to the radiosensitive organs by 64%-100% (p=0.51-0.18) one metre adjacent and 

65%-100% (p=0.65-0.18) two metres opposite to a chest X-ray examination. Although the 

absorbed doses were clinically low (7.65-0 µGy one metre adjacent, and 1.24-0 µGy two 

metres opposite) within this study, hospital ward inpatients would benefit in clinical practice 

from lead protection to limit ionising radiation dose to their radiosensitive organs as often 

these patients require repeat imaging during their hospital ward stay. 

Lead aprons and thyroid collars are not the only shielding methods used in radiation 

protection; future research opportunities exist to investigate alternative lightweight 

shielding materials for radiation protection.  
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