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Discourse in psychological science concerning the replication crisis is growing, with typically cited 

indicators including scientific fraud, the use of questionable research practices and the failure of 

published effects to replicate. It is paramount that education researchers are aware of this crisis and 

adopt appropriate methodological and reporting practices so as to ensure that a merited degree of trust 

can be placed in published results. As discourse concerning replicability is currently scarce in 

technology education, this study presents a z-curve analysis of the replicability of contemporary 

technology research to instigate this type of consideration. Articles from volumes 27, 28 and 29 of the 

International Journal of Technology and Design Education were included in the analysis. Results show 

an increase in the replicability rate from 64% in volume 27 to 70% in volume 28 and finally 71% in 

volume 29 which should be considered as quite good. However, there is room for improvement to ensure 

confidence in technology education research, and practices to improve as a field are discussed. 
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Introduction 

Despite its importance, the concept of replicability in research elicits a degree of contention with respect 

to its definition (National Academies of Sciences Engineering and Medicine, 2019). This is largely due 

to its similarity with the concept of reproducibility. In a review paper concerned with the usage of these 

terms, Barba (2018) noted three categories of usage, which she termed as groups A, B1, and B2. 

Researchers in group A used the terms “replicability” and “reproducibility” interchangeably. Those in 

group B1 used the term “reproducibility” for instances where the original researchers’ data and computer 

codes are used to regenerate the same results and the term “replicability” for when a researcher collects 

new data which supports the results of a previous study. Finally, group B2 used the term 

“reproducibility” to refer to when independent researchers arrive at the same conclusions using their 

own methods and data and the term “replicability” for a different researcher(s) come to the same 

conclusion using the original researchers source materials and methodology, thereby being in near direct 

opposition to those in group B1. Therefore, to clarify for the purposes of this article, these terms will be 

considered in line with their usage by the American National Academies of Sciences, Engineering, and 

Medicine (2019). Replicability will be used to refer to consistency in results across studies aiming to 

answer the same scientific question while reproducibility is considered to mean obtaining consistent 

results when using the same input data. 

Replication is critical to building confidence in research results as consistent replications of results 

suggest validity and, depending on other methodological factors, generalisability. Likewise, when 

results fail to replicate, evidence is provided to suggest that they may lack validity. At least within 

psychological science, “until recently, psychologists were confident that published results were 

replicable” (Brunner & Schimmack, 2017, p. 3). This is due to published studies generally reporting 

statistically significant results, meta-analyses generally supporting empirical hypotheses, and multi-

study articles typically reporting series of successful replications. However, a what has since become 

referred to as a “replication crisis” arose in the 2010’s after a series of events which cast doubt on the 

replicability of psychological research. These included failed replications of psychological results, 
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reports of psychologists unwilling to share their data, and evidence that many psychologists admitted to 

engaging in at least one questionable research practice (Pashler & Wagenmakers, 2012). Unfortunately, 

while the most desirable explanation for published research results would be that they align with correct 

theory, there are many other explanations such as questionable research practices, publication bias, 

statistical error, and lack of consideration of relevant variables. 

Replication failures have been observed across a variety of areas of psychology, including educational 

psychology. This can have significant implications as research is translated into practice such as wasting 

resources, having students participate in ineffective or even harmful interventions, general advocacy for 

sub-standard pedagogical methodologies, diminished confidence in research and researchers from the 

general public and other relevant stakeholders, etc. While to date there have been no notable replication 

failures in the technology education research, it is critical that researchers within the field consider the 

replicability of relevant results, engage in replication studies, and stay up to date with contemporary 

research practices, particularly as many have emerged in light of the replication crisis. By way of 

example, the popular theory of growth mindset has recently seen an emergence of studies which call 

both the theory and associated interventions into question. For example, Li and Bates (2017) failed to 

replicate Mueller and Dweck’s (1998) seminar study. Studies by Foliano, Rolfe, Buzzeo, Runge and 

Wilkinson (2019) and Rienzo, Rolfe and Wilkinson (2015) found teaching students growth mindset to 

have no impact on grades or other outcomes. Similarly, a meta-analysis (Sisk, Burgoyne, Sun, Butler, 

& Macnamara, 2018) and large scale study (Bahník & Vranka, 2017) found the correlation between 

growth mindset and academic performance to be negligible. These results cast doubt over the validity 

of the theory and utility of pertinent interventions. Engaging in quality control research activities such 

as examining the replicability of technology education research could mitigate the occurrence of a 

similar event within the field. This paper reports the results of an initial investigation into the 

replicability of recently published results from within technology education in an attempt to instigate 

discourse associated with enhancing relevant research practices. 

Method 

Statistical approach: Z-curve analysis 

There are multiple approaches to estimating the replicability of studies. For example, the Many Labs 

approach is to replicate a single study across several labs (Klein et al., 2014). This approach requires 

significant resources. There are also statistical methods, such as p-curve and z-curve analyses. These 

approaches are useful for estimating the replicability of a large number of original studies by estimating 

the average statistical power of studies which produced a statistically significant result. Brunner and 

Schimmack (2017) recommend the use of z-curve over p-curve as while they found p-curve to perform 

well when studies were homogeneous, it did not where there was heterogeneity. Z-curve however was 

designed to estimate power under the condition that population effect sizes are heterogeneous.  

This study used z-curve 2.0. (Bartoš & Schimmack, 2020), an extension of z-curve 1.0. (Bartoš & 

Schimmack, 2020). The evolution of z-curve up to the current version 2.0. (at the time of publication of 

this manuscript) is described in detail by Brunner and Schimmack (2016, 2017, 2020) and Bartoš and 

Schimmack (2020). These articles include simulation studies, comparisons with other methods, 

descriptions of associated formulae, and descriptions and rationales for the z-curve approach. For this 

article therefore it is more pertinent to focus on the outputs it provides. These include: 

 Observed discovery rate (ODR): This is the proportion of statistically significant results 

observed within the dataset. For example, if the dataset contained 100 statistical tests, and 70 of 

them provided a statistically significant (p < .05) result, the ODR would be .70. 

 Expected discovery rate (EDR): Based on the significant results reported, Z-curve 2.0. has the 

capacity to estimate the total number of studies that were conducted, including those with non-
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significant results which may not have been reported (Bartoš & Schimmack, 2020). This allows 

for and estimation of the EDR, i.e., the percentage of significant results obtained across all 

studies. The EDR can be compared with the ODR with discrepancies indicating publication 

bias. 

 File drawer ratio (FDR): The FDR is an estimation of how many non-significant results were 

obtained for each significant result. It is a conversion of the EDR, i.e., FDR = (1-EDR)/EDR. 

The idea of a file drawer was coined by Rosenthal (1979) where he described metaphorical “file 

drawers” in research labs filled with non-significant results which were not reported. 

 Soric’s false discovery risk (SFDR): The SFDR is the maximum false discovery rate (Soric, 

1989). For example, an SFDR value of .08 or 8% indicates that no more that 8% of the 

significant results from the z-curve analysis are false discoveries. The SFDR is calculated as a 

function of the FDR, i.e., SFDR = FDR*alpha/(1-alpha) or SFDR = FDR*0.5/.95. 

 Expected replicability rate (ERR): The ERR refers to the unconditional mean power of the 

studies within the dataset with statistically significant results, as this can be used to predict the 

outcome of exact replication studies. 

Dataset 

As the purpose of this study was to estimate the replicability of recently published technology education 

research, predominantly as a conduit for introducing discourse concerning replication into technology 

education, articles from 2017-2019 (volumes 27, 28, and 29) from the International Journal of 

Technology and Design Education (IJTDE) were selected as the dataset. As the input for z-curve are z-

scores derived from test statistics and p-values, only quantitative studies which reported statistical tests 

e.g., t, F, chi-squared, or z statistics, were eligible.  

Each article from volumes 27 (n = 38), 28 (n = 54), and 29 (n = 59) was manually screened and coded 

initially as being empirical or non-empirical. Then empirical studies were coded as being either 

quantitative, qualitative, or mixed methods based on the nature of the empirical work which was 

reported. Finally, quantitative and mixed methods studies were coded as to whether they did or did not 

report the results of a hypothesis test. Figure 1 illustrates the results of this coding process across each 

of the three volumes, and Figure 2 illustrates a breakdown across each issue. There is a relatively large 

variation with respect to the nature of published work across issues as can be expected, but the nature 

of work published each year is relatively stable. 

 

Figure 1. Descriptive statistics of IJTDE articles illustrating the percentage of published articles which 

were empirical, included hypothesis testing, and which reported on quantitative, qualitative, 

and mixed methods studies, across volumes 27 to 29. 
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Figure 2. Descriptive statistics of IJTDE articles illustrating the percentage of published articles which 

were empirical, included hypothesis testing, and which reported on quantitative, qualitative, 

and mixed methods studies, across issues 27.1 to 29.5. 

Figure 2 represent all articles published across volumes 27, 28 and 29 of the IJTDE, however the z-

curve analysis was conducted between the publishing of issues 29.4 and 29.5. Therefore, the z-curve 

analyses are only associated with issues 27.1 to 29.4. Across these issues, a total of 54 articles reported 

tests statistics associated with a hypothesis test, with most articles reporting multiple test statistics. Some 

articles did not provide sufficient information, for example reporting a statistically significant mean 

difference but only presenting p < .05, and thus could not be coded. In total, there were 18 articles in 

volume 27 which reported on hypothesis testing providing a total of 233 valid test statistics, there were 

20 pertinent articles in volume 28 which provided a total of 279 valid test statistics, and there were 16 

pertinent articles in volume 29 (issues 29.1 to 29.4) which reported a total of 178 valid test statistics.  

Each test statistic was manually extracted and exact p values were computed if they were not reported 

which were then converted to z-scores. In a two-tailed test for example, a p-value of 0.05 equates to a z-

score of 1.96. A separate dataset for each volume of the IJTDE was then created, which consisted of a 

single list of the valid z-scores derived from the reported test statistics in that volume. Finally, the z-

curve analysis was conducted in RStudio using the z-curve package developed by František (see 

Schimmack, 2020). At this point it should be noted that, as quite often no focal test was apparent, all 

reported test statistics were included in the analysis. Kalmendal and Mühlmeister (2019) compared the 

use of z-curve with just focal test statistics and with all tests statistics after automated extraction and 

found that automated extraction was as good as manual coding, suggesting the inclusion of all test 

statistics as was done in this study is not a significant limitation. 

Results 

The results of the z-curve analysis for volume 27 are presented in Figure 3. There is a significant 

difference (the confidence intervals do not overlap) between the ODR and EDR suggesting the presence 

of publication bias. The FDR of 4.16 suggests that for each significant result reported, there are 

approximately 4.16 non-significant results which were not reported. The SFDR value of .22 suggests 

that a maximum of 22% of the 132 significant results were false discoveries. Finally, the ERR of .64 

suggests a replicability rate of 64% for the reported significant results in that volume. 
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Figure 3. Estimated z-curve for the volume 27 dataset. The histogram depicts the distribution of z-

scores. The vertical red line represents the statistical significance criterion (z = 1.96/p = 0.05). 

The solid blue line displays the density of the estimated model. The dotted lines represent 

uncorrected piece-wise 95% confidence intervals. 

The results of the z-curve analysis for volume 28 are presented in Figure 4. There is a significant 

difference (the confidence intervals do not overlap) between the ODR and EDR suggesting the presence 

of publication bias. The FDR of 2.57 suggests that for each significant result reported, there are 

approximately 2.57 non-significant results which were not reported. The maximum SFDR value of .14 

suggests that a maximum of 14% of the 191 significant results were false discoveries. Finally, the ERR 

of .70 suggests a replicability rate of 70% for the reported significant results in that volume. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Estimated z-curve for the volume 28 dataset. The histogram depicts the distribution of z-

scores. The vertical red line represents the statistical significance criterion (z = 1.96/p = 

0.05). The solid blue line displays the density of the estimated model. The dotted lines 

represent uncorrected piece-wise 95% confidence intervals. 
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The results of the z-curve analysis for volume 29 are presented in Figure 5. The overlap in the confidence 

intervals between the ODR and the EDR indicates there is not a statistically significant difference 

between the two, and the difference is less that what was observed for volumes 27 and 28, indicating 

that while there may be publication bias, at least in this volume it was lower than the previous two. The 

FRD of 2.40 suggests that for each significant result reported, there are approximately 2.40 non-

significant results which were not reported. The maximum SFDR value of .13 suggests that a maximum 

of 13% of the 88 significant results were false discoveries. Finally, the ERR of .71 suggests a 

replicability rate of 71% for the reported significant results in that volume. 

 

Figure 5. Estimated z-curve for the volume 29 dataset. The histogram depicts the distribution of z-

scores. The vertical red line represents the statistical significance criterion (z = 1.96/p = 

0.05). The solid blue line displays the density of the estimated model. The dotted lines 

represent uncorrected piece-wise 95% confidence intervals. 

Discussion 

Before reflecting on these results, it is first important to consider the concepts of statistical power and 

statistical errors. Statistical power describes the probability of detecting an effect if there is an effect 

there to be detected. A general recommendation for the amount of statistical power which should be 

planned for is 80% (Cohen, 1988). With this level of power, this would mean that if an original study 

found a true, statistically significant effect, if researchers were to conduct ten replication studies of this, 

8 would produce a significant result. If there is a true effect, and a study fails to identify it, a type II error 

is committed. Similarly, if there is no effect to be found, and a study observes a statistically significant 

result, a false positive or type I error is committed. While an 80% recommendation is often cited for 

statistical power (the probability of avoiding a type II error), a 5% recommendation is typically used as 

an alpha value (the probability of avoiding a type I error). This is often denoted in quantitative studies 

as p < .05. 

Statistical power is directly related to a studies sample size and the effect size of the phenoma being 

investigated. Consider a study with a very large or obvious effect, there is not a need to have as many 

participants as would be needed if the effect being investigated is very small. Therefore, the larger the 



PATT38 Rauma, Finland 2021 – Section I  

Methods and Agendas in Technology Education 

7 
 Techne Series A: 28(2), 2021 1–9 

effect size, the smaller the required sample size is to achieve 80% power. In practice, for researchers 

this means reviewing literature of similar studies to estimate a hypothesised effect size or identifying 

the smallest effect size of interest, and conducting a power analysis to determine the required sample 

size to achieve the desired level of statistical power. For researchers trying to avoid committing a type 

I error, adjustment of the alpha level used can be considered. For example, if a study is conducted where 

one statistical test is needed and reported on, using an alpha level of .05 means that there is a 5% 

probability that if the result is statistically significant it was a false positive, i.e. a 1 in 20 liklihood. 

However if a study includes more statistical tests (multiple comparisons) using the same dependant 

variable, each measured against an alpha value of .05, the family-wise error rate increses (Figure 6). 

Researchers can adjust for multiple comparisons by, for example, using corrections such as the 

Bonferroni or Holm corrections. 

 

Figure 6. Family-wise error rate as a function of the number of statistical comparisons made in a study. 

From the z-curve analysis, the EDR value describes the unconditional mean power of all studies within 

a dataset, including those with nonsignificant results, while the ERR value describes the unconditional 

mean power of the studies with significant results. There are different amounts of power between these 

values as publication bias (selection for statistical significance) favours studies with higher power as 

they are more likley to produce significant results. In the event that all studies within a dataset were 

designed to have the same power however these values would be identical. As there is a recommendation 

to design studies to have 80% power, values lower than this indicate that within a dataset they studies 

are generally underpowered, thus increasing the liklihood of committing a type II error and finding a 

false negative. 

From the results of this analysis, the ERR values increased across each volume from 64% in volume 27 

to 71% in volume 29 (issues 29.1 to 29.4). This indicates an increase in the replicability of research 

being published in the IJTDE. However, these results are likley an overestimation as all test statistics 

were included whether they were meaningful hypotheses or not. So for example, if a full correlation 

matrix was included, each correlation was considered within the analysis when the authors and research 

question may only have been interested in a few. That said, replicability rates of near 70% should be 

considered quite good considering the general rule of aiming for 80% statistical power, but considering 

this is likley an overestimation, there is still room for improvement in technology education research. 

In terms of implications for practice, an observation from the screening process at the beginning of this 

study was that many articles do not clearly report the results of statistical tests or do not report complete 

information. Degrees of freedom for example were often ommitted, as were test statistics and effect 

sizes. Not including all relevant information makes it difficult and sometimes impossible to evaluate the 
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results. Technology education research would also benefit from making considerations of replicability 

more widespread. Again, based on observations from reviewing the articles analysed for this article, 

considerations of sample size through conducting power analyses is not a practice typical of technology 

education research. Similarly, there was little to no evidence of consideration for multple comparisons. 

A fourth type of activity which would benefit technology education research would be to conduct more 

replication studies of theoretically interesting results to aid in determining the validity of results. In 

conjunction, if technology education journals were to introduce the option to publish registered reports 

(submiting a study plan to a journal which is peer reviewed prior to conducting a study, and upon 

receiving conditional acceptance conducting the study which, even if the result is not statistically 

significant, is accepted provided it is well reported and aligns with the study plan), issues associated 

with publication bias could be mitigated.  
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