Evaluation of intracranial physiological calcifications in Computed Tomography





Calcification, Choroid Plexus, Intracranial, Physiological, Pineal Gland


Introduction: Intracranial physiological calcifications are not related to any pathological conditions, rather they are due to the normal deposition of calcium or iron in the different parts of the brain. Computed Tomography (CT) scan is superior to all other modalities in terms of sensitivity in the detection of intracranial physiological calcifications. The objective of the study was to evaluate the frequency and location of intracranial physiological calcifications and also study them according to age and gender.

Methods: A retrospective cross-sectional study with a purposive sampling technique was conducted from November 2020 to February 2021 at the Department of Radiology and Imaging. CT scan images of every age group were reviewed from the base of the skull to the vertex excluding images with intracranial pathologies, injuries, artifacts, contrast enhancement and the patients with follow-up scans. Data were analyzed using SPSS version 25. Descriptive analysis was primarily preferred accompanied by inferential statistics.

Results: Out of 412 patients, 60.7% were male and the mean age was 41.16 ±19.915 years. The total number of calcifications was 795. 92.8% of patients showed calcifications. Males had a higher number of calcifications. The highest number of calcifications was seen in the age group 20-30. The highest calcification was seen in the pineal gland (76%) followed by the choroid plexus (70.4%) and the lowest in the caudate nucleus (0.38%). The earliest age of calcification was 8 years. There was a significant relationship between the increase in age and the increase in calcification (p<0.05). There was also a significant difference between male and female calcifications (p<0.05).

Conclusion: This study can be useful for clinicians to differentiate normal physiological intracranial calcifications from pathological calcification which will reduce misinterpretation of the calcifications.


Kiroglu Y, Çalli C, Karabulut N, Oncel C. Intracranial calcifications on CT. Diagnostic and Interventional Radiology. 2010 Dec 1;16(4):263. https://doi.org/10.4261/1305-3825.dir.2626-09.1

Daghighi MH, Rezaei V, Zarrintan S, Pourfathi H. Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran. Folia morphological 2007;66(2):115-9. PMID: 17594669

Sedghizadeh PP, Nguyen M, Enciso R. Intracranial physiological calcifications evaluated with cone beam CT. Dentomaxillofacial Radiology. 2012 Dec;41(8):675-8. doi: 10.1259/dmfr/33077422

Kieffer SA, Gold LH. Intracranial physiologic calcifications. In Seminars in roentgenology 1974 Apr 1 (Vol. 9, No. 2, pp. 151-162). WB Saunders. doi.10.1016/0037-198X(74)90030-3

Saade C, Najem E, Asmar K, Salman R, El Achkar B, Naffaa L. Intracranial calcifications on CT: an updated review. Journal of Radiology Case Reports. 2019 Aug;13(8):1. doi: 10.3941/jrcr.v13i8.3633

Jotania BM, Patel SV, Patel SM, Patel P, Patel SM, Singhal R. Study of age-related calcifications in pineal Gland, choroid plexus and falx cerebri based on cranio-cerebral computed tomograms. Int J Res Med. 2014; 3(3);1-7

Whitehead MT, Oh C, Raju A, Choudhri AF. Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. American Journal of Neuroradiology. 2015 Mar 1;36(3):575-80. https://doi.org/10.3174/ajnr.a4153

Gilman S. Imaging the brain. First of two parts. N Engl J Med,1998, 338: 812–820.

Raspopovic K, Opancina V, Vulovic M, Markovic S, Vojinovic R. Evaluation of Physiological Intracranial Calcifications in Children Using Computed Tomography. Serbian Journal of Experimental and Clinical Research. 2020 Jul 9;1. 10.2478/sjecr-2020-0011

Deepak S, Jayakumar B. Extensive intracranial calcification. The Journal of the Association of Physicians of India. 2005 Nov; 53:948. PMID: 16515234

Grech R, Grech S, Mizzi A. Intracranial Calcifications: A Pictorial Review. The neuroradiology journal. 2012 Aug;25(4):427-51. https://doi.org/10.1177/197140091202500406

Yalcin A, Ceylan M, Bayraktutan OF, Sonkaya AR, Yuce I. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects. Journal of chemical neuroanatomy. 2016 Dec 1; 78:20-4. https://doi.org/10.1016/j.jchemneu.2016.07.008

Abbassioun K, Aarabi B, Zarabi M. A comparative study of physiologic intracranial calcifications. Pahlavi Medical Journal. 1978 Apr 1;9(2):152-66. PMID: 683692

Kwak R, Takeuchi F, Ito S, Kadoya S. Intracranial physiological calcification on computed tomography (Part 1): Calcification of the pineal region. No to Shinkei= Brain and nerve. 1988 Jun;40(6):569-74. PMID: 3224033

Madhukar M, Choudhary AK, Boal DK, Dias MS, Ian tosca MR. Choroid plexus: normal size criteria on neuroimaging. Surg Radiol Anat 2012; 34(10):887-9. https://doi.org/10.1007/s00276-012-0980-5

Kwak R, Takeuchi F, Yamamoto N, Nakamura T, Kadoya S. Intracranial physiological calcification on computed tomography (Part 2): Calcification in the choroid plexus of the lateral ventricles. No To Shinkei, 40: 707–711. PMID: 3263140

de Oliveira MF, e Silva EB, de Oliveira JR. Prevalence of brain calcifications in a Brazilian cohort: A retrospective study in radiology services. Dementia & Neuropsychologia. 2013 Apr;7(2):210. doi: 10.1590/S1980-57642013DN70200012

Victor M, Ropper AH (2001) Adams and Victor’s principle of neurology. McGraw Hill, New York. URL: http://vlib.kmu.ac.ir/kmu/handle/kmu/77457

Uduma, F.U., Fokam P., Okere, P.C.N., Motah, M. Incidence of Physiological pineal gland and choroid plexus calcifications in cranio-cerebral computed tomograms in Douala, Cameroon. Global Journal of Medical Research, May 2011; Vol. XI, Version I: 5-11. ISSN: 0975 5853

Adeloye A, Felson B. Incidence of normal pineal gland calcification in skull roentgenograms of black and white Americans. AJR 1974; 122:503-507. https://doi.org/10.2214/ajr.122.3.503

Guja C, Dumitrascu A, Boscaiu V, Baciu A., Debrin, M. & Pavel, A. (2005) Choroid plexus – Pineal gland Correlations, Medical Anthropology Computed Tomography Studies, Intracranial Physiological Calcifications; Acta Endocrinologica (BUC) 1 (1), 1-18.

Freyschmidt J,Weins J, Stenberg A, Brossmann J. Freyschmidt’s “Koehler/Zimmer” Borderlands of normal and early pathological findings in skeletal radiography. 5.rev. ISBN 3-13-784105-4




How to Cite

Bhatt, B. P. (2023). Evaluation of intracranial physiological calcifications in Computed Tomography. Radiography Open, 9(1 in progress), 50–59. https://doi.org/10.7577/radopen.5205

Cited by