Valg av modalitet ved karundersøkelser: CTA vs. MRA
Valg av modalitet ved karundersøkelser: CTA vs. MRA
DOI:
https://doi.org/10.7577/radopen.4605Emneord (Nøkkelord):
MRA, CTA, Modality choice,, Angiographic imagingSammendrag
Keywords: MRA, CTA, Modality choice, Angiographic imaging, Mixed method
Sammendrag
Hensikt
Hensikten med denne studien var å undersøke hva som legges til grunn for radiologens valg av modalitet ved karundersøkelser. Dette med hensyn til at radiografen, med ansvar for berettigelse og selvstendig utførelse på CTA og MRA, bør kjenne til begrunnelsen for valgt modalitet.
Metode
Denne mixed method-studien bestod av en spørreundersøkelse med et nasjonalt perspektiv og et litteratursøk med et globalt perspektiv. Spørreundersøkelsen ble sendt til radiologer på offentlige sykehus i Norge. Litteratursøk ble gjennomført i databasene PubMed, Web of Science og Scopus, med søkeordene “MRA and CTA”, “MRA vs CTA” og “MRA and CTA and decision”.
Resultat
38 respondenter deltok i undersøkelsen, og 21 studier ble inkludert fra litteratursøket. I resultatet kom det frem flere viktige faktorer som påvirker valg av modalitet, blant annet tilgjengelighet, pasientens situasjon, bildekvalitet og diagnostisk verdi. Noen viktig funn er at modalitetsvalg avhenger av patologi og dens lokalisasjon, samt at det i stor grad tas hensyn til ønske fra den som henviser.
Konklusjon
Valg av modalitet er hovedsakelig basert på klinisk problemstilling og pasientrelaterte faktorer. Faktorer knyttet til selve modaliteten som strålingsbelastning, undersøkelseshastighet, tilgjengelighet, er også tatt i betraktning, men foretrukken modalitet vil endres i takt med teknologiutvikling. Det kan sess et behov for retningslinjer for å øke radiografens kompetanse.
Referanser
Weinreich M, Litwok Y, Mui LW, Lau JF. Advanced vascular imaging. Vasc Med 2017;22(1):73-76. (In eng). DOI: 10.1177/1358863x16681666.
Beckett KR, Moriarity AK, Langer JM. Safe Use of Contrast Media: What the Radiologist Needs to Know. RadioGraphics 2015;35(6):1738-1750. DOI: 10.1148/rg.2015150033.
Sammet S. Magnetic resonance safety. Abdom Radiol (NY) 2016;41(3):444-51. (In eng). DOI: 10.1007/s00261-016-0680-4.
Westad TH. Hvordan praktisere berettigelse i en radiologisk hverdag? Hold pusten. HoldPusten 2013;4:28-30
Bakke KA. Radiografene sprenger profesjonsgrensen. Dagens medisin 2011 (https://www.dagensmedisin.no/artikler/2011/02/09/radiografene-sprenger-profesjonsgrensen/).
Nilsen L. Radiolog-mangel bidrar til uønskede hendelser Dagens Medisin 2017 (https://www.dagensmedisin.no/artikler/2017/02/16/radiolog-mangel-bidrar-til-uonskede-hendelser/ ).
Lekve K OD, Fevolden AM. . Glidende overgang: Flaskehalser og oppgavedeling i bildediagnostikk 46/2013. Oslo: Nordisk institutt for studier av innovasjon, forskning og utdanning, 26.11.2013 2013. (https://nifu.brage.unit.no/nifu-xmlui/handle/11250/280777 ).
Booth L, Henwood S, Miller P. Reflections on the role of consultant radiographers in the UK: What is a consultant radiographer? Radiography 2016;22(1):38-43. DOI: https://doi.org/10.1016/j.radi.2015.05.005.
Høringssvar strategi for rasjonell bruk av bildediagnostikk Norges radiografforbund. Oslo2018.
Shi Z, Hu B, Schoepf UJ, et al. Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives. American Journal of Neuroradiology 2020;41(3):373. DOI: 10.3174/ajnr.A6468.
The European Federation Of Radiographer S. Artificial Intelligence and the Radiographer/Radiological Technologist Profession: A joint statement of the International Society of Radiographers and Radiological Technologists and the European Federation of Radiographer Societies. Radiography (Lond) 2020;26(2):93-95. (In eng). DOI: 10.1016/j.radi.2020.03.007.
Øyeblikkelig bildediagnostikk ved akutt hjerneslag Oslo: Helsedirektoratet, 21.12.2017 2017. (https://www.helsedirektoratet.no/retningslinjer/hjerneslag/akuttfasen-undersokelse-og-behandling-ved-hjerneslag/bildediagnostikk/oyeblikkelig-bildediagnostikk-ved-akutt-hjerneslag).
Strategi for rasjonell bruk av bildediagnostikk. Oslo: Helsedirektoratet, 01.02.2019 2019. (https://www.helsedirektoratet.no/rapporter/strategi-for-rasjonell-bruk-av-bildediagnostikk/Strategi%20for%20rasjonell%20bruk%20av%20bildediagnostikk%20-%20rapport%202019.pdf?download=false).
Netteskjema. Elektroniske spor fra Nettskjema Universitettet i Oslo; 2021.
Eberhard-Gran M. Spørreskjema som metode : for helsefagene. Oslo: Universitetsforl., 2017.
NSD. Hvordan gjennomføre et prosjekt uten å behandle personopplysninger? . Bergen.
Chae MP, Hunter-Smith DJ, Rozen WM. Comparative analysis of fluorescent angiography, computed tomographic angiography and magnetic resonance angiography for planning autologous breast reconstruction. Gland Surg 2015;4(2):164-178. (In eng). DOI: 10.3978/j.issn.2227-684X.2015.03.06.
Repplinger MD, Bracken RL, Patterson BW, et al. Downstream Imaging Utilization After MR Angiography Versus CT Angiography for the Initial Evaluation of Pulmonary Embolism. Journal of the American College of Radiology : JACR 2018;15(12):1692-1697. (In eng). DOI: 10.1016/j.jacr.2018.04.017.
Cowell GW, Reid AW, Roditi GH. Changing trends in a decade of vascular radiology-the impact of technical developments of non-invasive techniques on vascular imaging. Insights Imaging 2012;3(5):495-504. (In eng). DOI: 10.1007/s13244-012-0188-6.
Sailer AMH, Grutters JP, Wildberger JE, Hofman PA, Wilmink JT, van Zwam WH. Cost-effectiveness of CTA, MRA and DSA in patients with non-traumatic subarachnoid haemorrhage. Insights into imaging 2013;4(4):499-507. (In eng). DOI: 10.1007/s13244-013-0264-6.
Tian Z, Wang S, He Y, Ma C. Comparative Study of Three Preoperative Imaging Modalities for the Evaluation and Design of Superficial Circumflex Iliac Artery Perforator Flap: Color Doppler Ultrasound, Computed Tomography Angiography and Magnetic Resonance Angiography. Iran J Radiol 2020;17(3):e97168. (Research Article) (In en). DOI: 10.5812/iranjradiol.97168.
Feng Y, Shu SJ. Diagnostic Value of Low-Dose 256-Slice Spiral CT Angiography, MR Angiography, and 3D-DSA in Cerebral Aneurysms. Dis Markers 2020;2020:8536471. (In eng). DOI: 10.1155/2020/8536471.
Oda S, Utsunomiya D, Hirai T, et al. Comparison of dynamic contrast-enhanced 3T MR and 64-row multidetector CT angiography for the localization of spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2014;35(2):407-12. (In eng). DOI: 10.3174/ajnr.A3660.
Pamminger M, Klug G, Kranewitter C, et al. Non-contrast MRI protocol for TAVI guidance: quiescent-interval single-shot angiography in comparison with contrast-enhanced CT. Eur Radiol 2020;30(9):4847-4856. (In eng). DOI: 10.1007/s00330-020-06832-7.
Schaefer PJ, Pfarr J, Trentmann J, et al. Comparison of noninvasive imaging modalities for stenosis grading in mesenteric arteries. Rofo 2013;185(7):628-34. (In eng). DOI: 10.1055/s-0033-1335212.
Wu G, Yang J, Zhang T, et al. The diagnostic value of non-contrast enhanced quiescent interval single shot (QISS) magnetic resonance angiography at 3T for lower extremity peripheral arterial disease, in comparison to CT angiography. J Cardiovasc Magn Reson 2016;18(1):71. (In eng). DOI: 10.1186/s12968-016-0294-6.
Cai ZQ, Chai SH, Wei XL, You KZ, Li J, Zhang DM. Comparison of postsurgical clinical sequences between completely embolized and incompletely embolized patients with wide nicked intracranial aneurysms treated with stent assisted coil embolization technique: A STROBE-compliant study. Medicine (Baltimore) 2018;97(23):e10987. (In eng). DOI: 10.1097/md.0000000000010987.
Lv P, Lin J, Guo D, et al. Detection of carotid artery stenosis: a comparison between 2 unenhanced MRAs and dual-source CTA. AJNR Am J Neuroradiol 2014;35(12):2360-5. (In eng). DOI: 10.3174/ajnr.A4073.
Poskaite P, Pamminger M, Kranewitter C, et al. Self-navigated 3D whole-heart MRA for non-enhanced surveillance of thoracic aortic dilation: A comparison to CTA. Magn Reson Imaging 2021;76:123-130. (In eng). DOI: 10.1016/j.mri.2020.12.003.
3Varga-Szemes A, Wichmann JL, Schoepf UJ, et al. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC: Cardiovascular Imaging 2017;10(10, Part A):1116-1124. DOI: https://doi.org/10.1016/j.jcmg.2016.09.030.
Wu G, Jin T, Li T, Morelli J, Li X. High spatial resolution time-resolved magnetic resonance angiography of lower extremity tumors at 3T: Comparison with computed tomography angiography. Medicine (Baltimore) 2016;95(37):e4894. (In eng). DOI: 10.1097/md.0000000000004894.
Dündar TT, Aralaşmak A, Özdemir H, et al. Comparison of TOF MRA, Contrast-Enhanced MRA and Subtracted CTA from CTP in Residue Evaluation of Treated Intracranial Aneurysms. Turk Neurosurg 2017 (In eng). DOI: 10.5137/1019-5149.Jtn.21113-17.2.
Chen X, Liu Y, Tong H, et al. Meta-analysis of computed tomography angiography versus magnetic resonance angiography for intracranial aneurysm. Medicine (Baltimore) 2018;97(20):e10771. (In eng). DOI: 10.1097/md.0000000000010771.
Wang L, Zhu L, Li G, et al. Gadolinium-enhanced magnetic resonance versus computed tomography angiography for renal artery stenosis: A systematic review and meta-analysis. J Formos Med Assoc 2021;120(5):1171-1178. (In eng). DOI: 10.1016/j.jfma.2021.01.007.
Schiebler ML, Nagle SK, François CJ, et al. Effectiveness of MR angiography for the primary diagnosis of acute pulmonary embolism: clinical outcomes at 3 months and 1 year. J Magn Reson Imaging 2013;38(4):914-925. (In eng). DOI: 10.1002/jmri.24057.
Repplinger MD, Nagle SK, Harringa JB, et al. Clinical outcomes after magnetic resonance angiography (MRA) versus computed tomographic angiography (CTA) for pulmonary embolism evaluation. Emerg Radiol 2018;25(5):469-477. (In eng). DOI: 10.1007/s10140-018-1609-8.
Zhu L, Wu G, Wang J, et al. Preoperative evaluation of renal artery in patients with renal tumor: Using noncontrast-enhanced magnetic resonance angiography. Medicine (Baltimore) 2016;95(42):e5025. (In eng). DOI: 10.1097/md.0000000000005025.
Cardiology ESo. Guidelines and Scientific Documents. (https://www.escardio.org/Guidelines).
Surgery SfV. (https://vascular.org/research-quality/guidelines-and-reporting-standards/clinical-practice-guidelines).
Rusandu A, Ødegård A, Engh GC, Olerud HM. The use of 80 kV versus 100 kV in pulmonary CT angiography: An evaluation of the impact on radiation dose and image quality on two CT scanners. Radiography (Lond) 2019;25(1):58-64. (In eng). DOI: 10.1016/j.radi.2018.10.004.
Reher T. Dual-Energy CT and Radiation Dose. J Am Coll Radiol 2020;17(1 Pt A):95-96. (In eng). DOI: 10.1016/j.jacr.2019.07.016.
Forskrift om strålevern og bruk av stråling (Strålevernforskriften) In: omsorgsdepartementet H-o, ed. Oslo2016.
Fraser AG, Buser PT, Bax JJ, et al. The future of cardiovascular imaging and non-invasive diagnosis. European Journal of Nuclear Medicine and Molecular Imaging 2006;33(8):955-959. DOI: 10.1007/s00259-006-0201-8.
Nedlastinger
Ytterligere filer
Publisert
Hvordan referere
Utgave
Seksjon
Lisens
Opphavsrett 2021 Maia Muri Skalmeraas, Eirin Ellingbø, Albertina Rusandu
Dette verket er lisensiert under Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication, with the work after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).