Analysis of the iodine distribution map in patients with diagnosis of pulmonary embolism: Initial results

Authors

  • Cecilia Muñoz Technology
  • Anghelo Silencio ORCID: 0000-0001-9392-3573
  • Isna Larico

DOI:

https://doi.org/10.7577/radopen.4491

Keywords:

Iodine Mapping, Pulmonary Embolism, Dual Energy, Computed Tomography

Abstract

Objectives: Analysing the iodine map distribution in patients with pulmonary embolism diagnosis by Dual Energy Computed Tomography. Materials and methods: Twenty-four images of pulmonary angiotomography by dual energy computed tomography were used to determinate the presence of pulmonary thrombi and identify the perfusion defects (PDs) in the Iodine Maps. Moreover, the iodine density (mg/ml) were measured in normal lung parenchyma and lung parenchyma with PDs areas. The documentary analysis was used thought the data collection sheet and the Likert scale questionnaire. The statistic software SPSS v.25 was used. Results: Thirty-four thrombi were found (21 occlusive and 13 partials occlusive) at monochromatic images. Forty-one perfusion defects (PD) were found at Iodine Maps, these have multiple origins: pulmonary thrombi (69.23%), artifacts (17.95%) and other alterations (12.82%). Furthermore, two new thrombi (5.56%) were identified, both were occlusive and segmental level. Mean Iodine density showed statistically significant differences among normal lung parenchyma (1.65 ± 0.66 mg/ml; [0.77-2.79 mg/ ml]) and parenchyma with PD areas (0.51 ± 0.26 mg/ml; [0.12-1.02 mg/ml])(p=0.000). Mean iodine density also had statistically significant differences between parenchyma with occlusive PD and partial occlusive PD (p=0.000). Iodine Map diagnostic quality was excellent (54.17%), good (33.33%), moderate (12.50%). Conclusion: The Iodine distribution Map offers a benefit greater than 5% in the diagnosis of pulmonary embolism by Dual-Energy Computed Tomography.

 

References

Alcocer Gamba, MA., González Juárez, F., León González, S., Castro Montes, E., & Alejandro Romero, M. (2006). Tromboembolia pulmonar, un enfoque multidisciplinario. 65(2), 88–100.

Bustos Fiore, A., González Vázquez, M., Trinidad López, C., Mera Fernández, D., & Costas Álvarez, M. (2018). Perfusion defects in pulmonary perfusion iodine maps: Causes and semiology. Radiología (English Edition), 60(4), 301–309. https://doi.org/10.1016/j.rxeng.2018.04.002

Chandra, N., Langan, DA. (2010). Gemstone Detector: Dual Energy Imaging via Fast kVp Switching. Dual Energy CT in Clinical Practice. Berlin, Heidelberg: Springer Berlin Heidelberg; p 35–41. DOI:10.1007/174_2010_35

Chien, C.-H., Shih, F.-C., Chen, C.-Y., Chen, C.-H., Wu, W.-L., & Mak, C.-W. (2019). Unenhanced multidetector computed tomography findings in acute central pulmonary embolism. BMC Medical Imaging 2019 19:1, 19(1), 1–8. https://doi.org/10.1186/S12880-019-0364-Y

Estrada Garzona, C. F., & Garzona Navas, A. F. Tromboembolismo pulmonar: Fisiopatología y diagnóstico. Revista Clínica de la Escuela de Medicina UCR –HSJD 2015; 5(2): 53–64.

Forghani, R., De Man, B., & Gupta, R. (2017). Dual-Energy Computed Tomography: Physical Principles, Approaches to Scanning. Usage, and Implementation: Part 1. Neuroimaging clinics of North America, 27(3), 371–384. https://doi.org/10.1016/j.nic.2017.03.002

Henzler T, Fink C, Schoenberg S, Schoepf J. Dual-Energy CT: Radiation Dose. Aspects. Alemania, AJR (2012), 199(5), S16-S25. DOI:10.2214/AJR.12.9210

Lu, G. M., Wu, S. Y., Yeh, B. M., & Zhang, L. J. (2010). Dual-energy computed tomography in pulmonary embolism. The British journal of radiology, 83(992), 707–718. https://doi.org/10.1259/bjr/16337436. https://doi.org/10.1259/bjr/16337436

Mc Collough, C. H., Leng, S., Yu, L., & Fletcher, J. G. (2015). Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology, 276(3), 637–653. https://doi.org/10.1148/radiol.2015142631

Mi-Jin Kang, Chang Min Park, Chang-Hyun Lee, Jin Mo Goo, Hyun Ju Lee. (2010). Dual-Energy CT: Clinical Applications in Various Pulmonary Diseases. RadioGraphics, 30:3, 685-698. https://doi.org/10.1148/rg.303095101

Monti, C. B., Zanardo, M., Cozzi, A., Schiaffino, S., Spagnolo, P., Secchi, F., De Cecco, C. N., & Sardanelli, F. (2021). Dual-energy CT performance in acute pulmonary embolism: a meta-analysis. European Radiology, 31(8), 6248–6258. https://doi.org/10.1007/s00330-020-07633-8

Noschang, Julia, Guimarães, Marcos Duarte, Teixeira, Diogo Fábio Dias, Braga, Juliana Cristina Duarte, Hochhegger, Bruno, Santana, Pablo Rydz Pinheiro, & Marchiori, Edson. (2018). Pulmonary thromboembolism: new diagnostic imaging techniques. Radiología Brasileira, 51(3), 178-186. Epub May 28, 2018. https://doi.org/10.1590/0100-3984.2017.0191

Oca Pernas, R., & Trinidad, C. ECR (2013). Pulmonary Perfusion Iodine Map with Dual Energy CT: ¿Can It Predict Gravity and Extension of Acute Pulmonary Embolism? Initial Experience. European Sociaty Radiology, C-1941. DOI:10.1594/ecr2013/C-1941

Piazza, G., & Goldhaber, S. Z. (2010). Management of submassive pulmonary embolism. Circulation, 122(11), 1124–1129. https://doi.org/10.1161/CIRCULATIONAHA.110.961136

Simón-Montero, E., Campos-Rivas, B., Guerra-García, M. M., Vírseda-Sacristán, A., Dorrego-López, M. A., & Charle-Crespo, Á. (2020). Evolución de la incidencia de la enfermedad tromboembólica venosa en Galicia durante diez años (2006-2015). Semergen, 46(5), 339–346. https://doi.org/10.1016/j.semerg.2020.04.007

Tang, C. X., Zhang, L. J., Han, Z. H., Zhou, C. S., Krazinski, A. W., Silverman, J. R., Schoepf, U. J., & Lu, G. M. (2013). Dual-energy CT based vascular iodine analysis improves sensitivityfor peripheral pulmonary artery thrombus detection: Anexperimental study in canines. European Journal of Radiology, 82(12), 2270–2278. https://doi.org/10.1016/j.ejrad.2013.06.021

Torbick, A., & Perrier, A. (2008). Guías de práctica clínica de la Sociedad Europea de Cardiología. Guías de práctica clínica sobre diagnóstico y manejo del tromboembolismo pulmonar agudo. Revista Española De Cardiología, 61(12), 1330–52. Recuperado de http://secardiologia.es/images/stories/documentos/guia-tep.pdf

Weidman EK, Plodkowski AJ, Halpenny DF, Hayes SA, Perez-Johnston R, Zheng. (2018). Dual-Energy CT Angiography for Detection of Pulmonary Emboli: Incremental Benefit of Iodine Maps. Radiology, 289(2), 546-53. DOI:10.1148/radiol.2018180594

Wiener, R. S., Schwartz, L. M., & Woloshin, S. (2013). When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found. BMJ, 347(7915). https://doi.org/10.1136/BMJ.F3368

Wu, H. W., Cheng, J. J., Li, J. Y., Yin, Y., Hua, J., & Xu, J. R. (2012). Pulmonary embolism detection and characterization through quantitative iodine-based material decomposition images with spectral computed tomography imaging. Investigative Radiology, 47(1), 85–91. https://doi.org/10.1097/RLI.0B013E31823441A1

Downloads

Published

2021-12-31

How to Cite

Muñoz, C., Silencio, A., & Larico, I. (2021). Analysis of the iodine distribution map in patients with diagnosis of pulmonary embolism: Initial results. Radiography Open, 7(1), 21–33. https://doi.org/10.7577/radopen.4491

Issue

Section

Articles

Cited by