Cortical thickness analysis – The methods

Forfattere

  • Ann Mari Gransjøen Oslo and Akershus University College of Applied Sciences

DOI:

https://doi.org/10.7577/radopen.1529

Sammendrag

Over the course of the last century, the cerebral cortex has been of interest for neuroscientists, and the work with mapping and measuring the cortex started in the early 1900s (Brodmann 1909).

The advances in medical imaging over the recent decades has given the opportunity to measure the cortex in vivo, and several algorithms and types of software applications has been developed for this purpose. These software applications can be used to execute complex analysis to determine both cortex thickness and density.

The algorithms and software applications presented in this paper are the ones most utilized to measure cortical thickness today, and include four software applications and two algorithms. The basic principles of these tools will be outlined, as well as their strengths and weaknesses.

Forfatterbiografi

Ann Mari Gransjøen, Oslo and Akershus University College of Applied Sciences

Department of Radiography and Dental Technology

Referanser

Brodmann, K. (1909). Vergleichende Lokalisation slehre der Groshirnrinde. Leipzig: Barth.

Buchy, L., Stowkowy, J., MacMaster, F. P., Nyman, K., & Addington, J. (2015). Meta-cognition is associated with cortical thickness in youth at clinical high risk of psychosis. Psychiatry Research: Neuroimaging, 233(3), 418-423.
https://doi.org/10.1016/j.pscychresns.2015.07.010

Chung, M. K., Worsley, K. J., Nacewicz, B. M., Dalton, K. M., & Davidson, R. J. (2010). General multivariate linear modeling of surface shapes using SurfStat. NeuroImage, 53(2), 491-505.
https://doi.org/10.1016/j.neuroimage.2010.06.032

Collins, D. L., Peters, T. M., Dai, W., & Evans, A. C. (1992, September). Model-based segmentation of individual brain structures from MRI data. In Visualization in Biomedical Computing (pp. 10-23). International Society for Optics and Photonics.
https://doi.org/10.1117/12.131063

Dale, A. M., & Sereno, M. I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Journal of cognitive neuroscience, 5 (2), 162-176.
https://doi.org/10.1162/jocn.1993.5.2.162

DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D. (2008) Colocalized Structural and Functional Changes in the Cortex of Patients with Trigeminal Neuropathic Pain. PLoS ONE, 3;(10):e3396.1 –e3396.14, 2387-3345:61
https://doi.org/10.1371/journal.pone.0003396

Duncan, J. S., Papademetris, X., Yang, J., Jackowski, M., Zeng, X., & Staib, L. H. (2004). Geometric strategies for neuroanatomic analysis from MRI. Neuroimage, 23, S34-S45.
https://doi.org/10.1016/j.neuroimage.2004.07.027

Erpelding, N., Moayedi, M., & Davis, K. D. (2012). Cortical thickness correlates of pain and temperature sensitivity. PAIN®,153(8), 1602-1609.
https://doi.org/10.1016/j.pain.2012.03.012

Fernández, Jaén, A., López,Martín, S., Albert, J., Fernández, Mayoralas, D. M., Fernández Perrone, A. L., de La Pe-a, M. J.,& Mu-oz Jare-o, N. (2015). Cortical thickness differences in the prefrontal cortex in children and adolescents with ADHD in relation to dopamine transporter (DAT1) genotype. Psychiatry Research: Neuroimaging, 233 (3), 409-417.
https://doi.org/10.1016/j.pscychresns.2015.07.005

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774-781.
https://doi.org/10.1016/j.neuroimage.2012.01.021

Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences. 97(20), 11050-11055.
https://doi.org/10.1073/pnas.200033797

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., ... & Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341-355.
https://doi.org/10.1016/S0896-6273(02)00569-X

Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Ségonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23, S69-S84.
https://doi.org/10.1016/j.neuroimage.2004.07.016

Frasnelli J, Fark T, Lehmann J, Gerber J, Hummel T. (2013) Brain structure is changed in congenital anosmia. NeuroImage Giakoumatos, C. I., Nanda, P., Mathew, I. T., Tandon, N., Shah, J., Bishop, J. R., ... & Keshavan, M. S. (2015). Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. Journal of psychiatric research,61, 180-187.

Goebel, R. (2012). BrainVoyager—past, present, future. Neuroimage, 62(2), 748-756.
https://doi.org/10.1016/j.neuroimage.2012.01.083

Goebel, R. Brainvoyager QX Users Guide[website],Maastricht; [last updated 2014, quoted on the 05.10.2015]. Available from: http://www.brainvoyager.com/bvqx/doc/UsersGuide/BrainVoyagerQXUsersGuide.html

Goldszal, A. F., Davatzikos, C., Pham, D. L., Yan, M. X., Bryan, R. N., & Resnick, S. M. (1998). An image-processing system for qualitative and quantitative volumetric analysis of brain images. Journal of computer assisted tomography, 22(5), 827-837.
https://doi.org/10.1097/00004728-199809000-00030

Green, G. (2008). An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. arXiv preprint arXiv:0807.0088

Han, X., Pham, D. L., Tosun, D., Rettmann, M. E., Xu, C., & Prince, J. L. (2004). CRUISE: cortical reconstruction using implicit surface evolution. NeuroImage, 23(3), 997-1012.
https://doi.org/10.1016/j.neuroimage.2004.06.043

Hawking, SW. & Ellis, G. F. R. (1973). The large scale structure of space-time (Vol. 1). Cambridge university press. Jones, S. E., Buchbinder, B. R., & Aharon, I. (2000). Three dimensional mapping of cortical thickness using Laplace's Equation. Human brain mapping, 11(1), 12-32.
https://doi.org/10.1017/CBO9780511524646

Kaufman, Z. Freesurfer [website],Charlestown: Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging ; [last updated 24.08.2015, quoted on the 30.09.2015]. Available from: http://freesurfer.net/fswiki/FsTutorial/OutputData_freeview

Kapellou, O., Counsell, S. J., Kennea, N., Dyet, L., Saeed, N., Stark, J & Edwards, A. D. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med, 3(8), e265.
https://doi.org/10.1371/journal.pmed.0030265

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International journal of computer vision, 1(4), 321-331.
https://doi.org/10.1007/BF00133570

Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab'bagh, Y., MacDonald, D., ... & Evans, A. C. (2005). Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage, 27(1), 210-221.
https://doi.org/10.1016/j.neuroimage.2005.03.036

Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage,24(1), 163-173.
https://doi.org/10.1016/j.neuroimage.2004.07.045

Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiology of aging, 29(1), 23-30.
https://doi.org/10.1016/j.neurobiolaging.2006.09.013

Li J, Li W, Xian J, Li Y, Liu Z & Liu S et.al. (2012) Cortical thickness analysis and optimized voxel based morphometry in children and adolescents with prelingually profound sensorineural hearing loss. Brain Research, 1430: 35 –42
https://doi.org/10.1016/j.brainres.2011.09.057

Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, & Shen D. (2012) Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiology of Aging, 33;(2):427.e15–427.e30
https://doi.org/10.1016/j.neurobiolaging.2010.11.008

Lorensen, W. E., & Cline, H. E. (1987, August). Marching cubes: A high resolution 3D surface construction algorithm. In ACM siggraph computer graphics (Vol. 21, No. 4, pp. 163-169). ACM.
https://doi.org/10.1145/37402.37422

MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. (2000). Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage,12(3), 340-356.
https://doi.org/10.1006/nimg.1999.0534

MacDonald, J. D. (1997). A method for identifying geometrically simple surfaces from three

MacDonald, D., Avis, D., & Evans, A. C. (1994, September). Multiple surface identification and matching in magnetic resonance images. In Visualization in Biomedical Computing 1994 (pp. 160-169). International Society for Optics and Photonics.
https://doi.org/10.1117/12.185176

Madsen, S. K., Zai, A., Pirnia, T., Arienzo, D., Zhan, L., Moody, T. D., ... & Feusner, J. D. (2015). Cortical thickness and brain volumetric analysis in body dysmorphic disorder. Psychiatry Research: Neuroimaging, 232(1), 115-122.
https://doi.org/10.1016/j.pscychresns.2015.02.003

Martinussen, M., Fischl, B., Larsson, H. B., Skranes, J., Kulseng, S., Vangberg, T. R., ... & Dale, A. M. (2005). Cerebral cortex thickness in 15-year-old adolescents with low birth weight measured by an automated MRI- based method. Brain, 128(11), 2588-2596.
https://doi.org/10.1093/brain/awh610

McConnel Brain Imaging Center, Montreal Neurological Institute. CIVET [website],

Moayedi, M., Weissman-Fogel, I., Crawley, A. P., Goldberg, M. B., Freeman, B. V., Tenenbaum, H. C., & Davis, K. D. (2011). Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. Neuroimage, 55(1), 277-286.
https://doi.org/10.1016/j.neuroimage.2010.12.013

Möller, T. (1997). A fast triangle-triangle intersection test. Journal of graphics tools, 2(2), 25-30.
https://doi.org/10.1080/10867651.1997.10487472

Nagy, Z., Lagercrantz, H., &Hutton, C. (2011). Effects of preterm birth on cortical thickness measured in adolescence. Cerebral Cortex, 21(2), 300-306.
https://doi.org/10.1093/cercor/bhq095

Nosarti, C., Nam, K. W., Walshe, M., Murray, R. M., Cuddy, M., Rifkin, L., & Allin, M. P. (2014). Preterm birth and structural brain alterations in early adulthood. NeuroImage: Clinical, 6, 180-191.
https://doi.org/10.1016/j.nicl.2014.08.005

Oertel-Knöchel, V., Reuter, J., Reinke, B., Marbach, K., Feddern, R., Alves, G., ... & Knöchel, C. (2015). Association between age of disease-onset, cognitive performance and cortical thickness in bipolar disorders. Journal of affective disorders,174, 627-635.
https://doi.org/10.1016/j.jad.2014.10.060

Querbes, O., Aubry, F., Pariente, J., Lotterie, J. A., Démonet, J. F., Duret, V., ... &Alzheimer's Disease Neuroimaging Initiative. (2009). Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain, 132(8), 2036-2047.
https://doi.org/10.1093/brain/awp105

Richter, J., Poustka, L., Vomstein, K., Haffner, J., Parzer, P., Stieltjes, B., & Henze, R. (2015).Volumetric alterations in the heteromodal association cortex in children with autism spectrum disorder. European Psychiatry,30(2), 214-220.
https://doi.org/10.1016/j.eurpsy.2014.11.005

Rudra, A. K., Sen, M., Chowdhury, A. S., Elnakib, A., &El-Baz, A. (2011). 3D Graph cut with new edge weights for cerebral white matter segmentation. Pattern Recognition Letters, 32(7), 941-947.
https://doi.org/10.1016/j.patrec.2010.12.013

Salat, DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, & Busa E et al. Thinning of the Cerebral Cortex in Aging. Cerebral Cortex, 2004, mar, 14;(7): 721 –730
https://doi.org/10.1093/cercor/bhh032

Sierra, M., Nestler, S., Jay, E. L., Ecker, C., Feng, Y., & David, A. S. (2014). A structural MRI study of cortical thickness in depersonalisation disorder. Psychiatry Research: Neuroimaging, 224(1), 1-7.
https://doi.org/10.1016/j.pscychresns.2014.06.007

Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. Harvard University Press.

Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging.

Truong, W., Minuzzi, L., Soares, C. N., Frey, B. N., Evans, A. C., MacQueen, G. M., & Hall, G. B. (2013). Changes in cortical thickness across the lifespan in major depressive disorder. Psychiatry Research: Neuroimaging, 214(3), 204-211.
https://doi.org/10.1016/j.pscychresns.2013.09.003

von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen: Taf. I-CXII. Atlas. Springer.

Worsley KJ. SurfStat, A MATLAB toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory [website], Montreal, McGill University [last updated on the 26.09.2008, quoted on the 14.09.2015]. Available from: http://www.math.mcgill.ca/keith/surfstat/

Wu X, Yu C, Fan F, Zhang K, Zhu C & Wu T et al. Correlation between Progressive Changes in Piriform Cortex and Olfactory Performance in Early Parkinsons Disease. European Neurology, 2011, aug. 66; (2): 98–105
https://doi.org/10.1159/000329371

Yezzi Jr, A. J., & Prince, J. L. (2003). An Eulerian PDE approach for computing tissue thickness. Medical Imaging, IEEE Transactions on22(10), 1332-1339

Zugman, A., Pedrini, M., Gadelha, A., Kempton, M. J., Noto, C. S., Mansur, R. B., ... & Brietzke, E. (2015). Serum brain -derived neurotrophic factor and cortical thickness are differently related in patients with schizophrenia and controls. Psychiatry Research: Neuroimaging.
https://doi.org/10.1016/j.pscychresns.2015.08.009

Nedlastinger

Publisert

2015-11-30

Hvordan referere

Gransjøen, A. M. (2015). Cortical thickness analysis – The methods. Radiography Open, 2(1), 52–64. https://doi.org/10.7577/radopen.1529

Utgave

Seksjon

Artikler

Cited by