CT Thorax lavdose - En sammenligning av et organdosemodulerings program X-CARE og vismut beskyttelse
DOI:
https://doi.org/10.7577/radopen.1996Emneord (Nøkkelord):
Radiografi, CT thorax, bildekvalitet, organdosemodulering, Vismut beskyttelse, SNR, CNRSammendrag
Innledning
Computertomografi (CT) er en hyppig utført undersøkelse i Norge. Både mammae og thyroidea er strålefølsomme organer som eksponeres ved en CT thorax undersøkelse. For å få ned inngangsdosen (ESD) til slike strålefølsomme organer kan man enten benytte seg av en organspesifikk adaptiv dose reduksjons protokoll (X-CARE) eller isteden legge vismut beskyttelse over de strålefølsomme organene ved CT-undersøkelsen. I denne studien sammenligner vi huddosen (ESD) over mamma, samt bildekvalitet, ved bruk av disse to metodene ved en CT thorax lavdose undersøkelse?
Material og metode
30 spiral skanninger, hvorav ti standard lavdose, ti med vismut beskyttelse og ti med X-CARE, ble utført på et Alderson fantom, kombinert med Care Dose 4D, på en Siemens SOMATOM Definition Edge 128 CT maskin. ESD ble målt, CTDIvol og Dose-lengde-produkt (DLP) ble hentet ut fra doserapporten. Den objektive bildekvaliteten ble analysert, og vurdert ved hjelp av tre Region Of Interest (ROI), plassert hhv i luft, i lungeparenkymet og i pleura parietale. Signal til støyforhold (SNR) og kontrast til støyforhold (CNR) ble regnet ut ifra ROI verdiene.
Resultater
ESD til mamma viste dosereduksjon sammenlignet med en standard CT thorax lavdose; hhv 16,5 % dosereduksjon ved bruk av vismut beskyttelse, og 0,44 % ved X-CARE. Det var ingen forskjell i CTDIvol og DLP ved standard lavdose skanningen eller skanningen med vismut beskyttelse. Skanningen med X-CARE ga en økning i CTDIvol og DLP på omtrent 12 %. SNR og CNR i lungeparenkymet og pleura parietale var høyest ved standard lavdose undersøkelsen. Bildestøyen økte 48 % ved vismut og 26,4 % ved X-CARE.
Konklusjon
ESD ble markant redusert ved CT thorax lavdose undersøkelsen med vismut beskyttelse, men ga samtidig en markant økning i bildestøyen. X-CARE reduserte ESD minimalt sammenlignet med standard lavdose skanningen, men ga økt bildestøy. Den mest effektive måten å oppnå en optimal lavdose undersøkelse på, er ved å utføre en standard CT thorax lavdose protokoll.
Abstract
Introduction
Computed tomography (CT) is a frequent examination conducted in Norway. Mammae and thyroid gland are both dose sensitive body organs, which are being exposed during a thoracic CT examination. Therefore, an optimization of protocols is necessary and X-CARE (organ-based tube current modulation) or bismuth protection may be applied during a CT examination. Will the two methods give a difference in the entrance surface dose (ESD) to mamma and the image quality of a low-dose thoracic CT examination?
Materials and methods
Thirty spiral CT scans of which ten was standard low-dose, ten with bismuth shielding and ten with X-CARE was performed on an Alderson phantom, combined with CARE Dose 4D and carried out on a Siemens SOMATOM Definition Edge 128. Measures as ESD, CTDIvol and Dose-length-product (DLP) were obtained from the dose report. The image quality was analysed objectively and assessed using three Region of Interest (ROI), placed in air, lung parenchyma and parietal pleura. Signal to noise ratio (SNR) and contrast to noise ratio (CNR) were calculated from the ROI results.
Results
ESD to the mammary gland demonstrated a dose reduction compared to a standard thoracic CT low dose. Respectively; 16.5 % dose reduction with bismuth shielding and 0.44 % with X-CARE. There was no difference in CTDIvol and DLP between the standard low-dose scans and the scans with bismuth shielding. The CT scans with X-CARE gave an increase in CTDIvol and DLP by approximately 12 %. SNR and CNR in the lung parenchyma and parietal pleura were highest during the standard low-dose scans. Bismuth shielding increased the noise with 48 % and X-CARE with 26,4 %.
Conclusion
ESD was significantly reduced during the CT thoracic low-dose examination using bismuth shielding, however notably the bismut increased the image noise. X-CARE reduced the ESD minimally compared to the CT low-dose scans, and it also increased the image noise. The most efficient way to achieve an optimal thoracic CT examination is to use a standard low-dose protoco
Referanser
2. Colletti P.M, Micheli O.A, Lee K.H. To shield or not to shield: Application of Bismuth Breast Shields. AJR Americal Journal of Radiology 2013;200(3): 503-507. DOI:10.2214/AJR.12.9997
3. CT-bruken i Norge gir høye stråledoser til befolkningen. Østerås: Statens Strålevern; 2013
4. Strålebruk i Norge. Nyttig bruk og godt strålevern for samfunn, menneske og miljø [internett]. Østerås: 2014
5. Veileder om medisinsk bruk av røntgen- og MR-apparatur. Veileder til forskrift om strålevern og bruk av stråling. Veileder nr. 5. Østerås: Statens strålevern, 2005 [revidert september 2014]
6. Hva er CT? Østerås: Statens strålevern; 2014
7. Tack D, Kalra MK, Gevenois PA. Radiation Dose from Multidetector CT. New York: Springer 2012 https://doi.org/10.1007/978-3-642-24535-0
8. Vollmar S.V, Kalender W.A. Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations European Radiology. 2008, 18(8):1674-1682. DOI: 10.1007/s00330-008-0934-9
9. X-CARE. Siemens Healthcare, Erlangen, Tyskland. [Sitert 2016, Januar 01]. Tilgjengelig fra: https://www.healthcare.siemens.com/computed-tomography/options-upgrades/clinical-applications/x-care/features
10. Ketelsen D, et. al. Automated computed tomography dose-saving algorithm to protect radiosensitive tissues: estimation of radiation exposure and image quality considerations. Investigative Radiology. 2012, 47(2):148-52. DOI: 10.1097/RLI.0b013e3182311504.
11. Kim Y.K., Sung Y.M., Choi J.H., Kim E.Y., Kim H.S. Reduced Radiation Exposure of the Female Breast During Low-Dose Chest CT Using Organ-Based Tube Current Modulation and Bismuth Shield: Comparison of Image Quality and Radiation Dose. 2013;200(3):537-544. DOI: 10.2214/AJR.12.9237
12. Forskrift om strålevern og bruk av stråling (Strålevernsforskriften). Østerås: Statens strålevern, 2014, 2010.
13. Mahesh M, MDCT Physics: The Basics: Technology, Image Quality and Radiation Dose. Philadelphia. Lippincott Williams and Wilkins; 2009.
14. Approaches to Dose Reduction In Computed Tomography. Siemens Healthcare. Erlangen. [Sitert 2016 April 15]. Tilgjengelig fra: http://www.healthcare.siemens.com/medical-imaging/low-dose/low-dose-information-by-modality/low-dose-in-computed-tomography/computed-tomography-approaches-to-dose-reduction/reduction-advances
15. Optima CT540 GE. GE Healthcare. [Sitert 2016 April 15]. Tilgjengelig fra: http://www3.gehealthcare.co.uk/en-gb/products/categories/computed_tomography/optima_family
16. AttenuTech. AttenuRad, CT Radiation Shields[internett]. Lutz, Florida [sitert 2016 April 15]. Tilgjengelig fra: http://www.barrieronline.com/radiation/ct-shields.php
17. Nordic position statement on the use of bismuth shielding for the purpose of dose reduction in CT scanning. Statens Strålevern. Østerås, 2015
18. Radiology Support Devices, Alderson Phantoms. Long Beach, CA, USA: [sitert 2016 April 15]. Tilgjengelig fra: http://www.rsdphantoms.com/rt_art.htm
19. Tissue Substitutes in Radiation Dosimetry and Measurement. Rapport 44. International Commission on Radiation Units & Measurement. Bethesda, USA.
20. Rosalina Instruments. Mumbai, India [Sitert 2016 April 15] Tilgjengelig fra: http://www.rosalina.in/patient-skin-dose-measurements-in-fluoro-CT.html
21. AttenuRad CT Breast Shield System (Female Adults). [Sitert 2016 Mars 05] Tilgjengelig fra: http://www.fandlmedicalproducts.com/ct_adult_shield.html
22. Mannudeep K.K., Dang P., Singh S., Saini S., Shepard J.O. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance. Korean Journal of Radiology. 2016; 10(2):156-63. DOI: 10.3348/kjr.2009.10.2.156
23. Thorax Lavdose Prosedyre, T3 CT, lab 2. Aker sykehus. Oslo universitetssykehus
24. Berstad A.E., Aaløkken M. CT undersøkelser. Muligheter og begrensninger ved bruk av kontrast [internett]. Oslo: Høyskolen i Oslo og Akershus [sitert 2016 April 14]. Tilgjengelig fra: https://blogg.hioa.no/victdel4/files/2014/12/CT-unders%C3%B8kelser-norsk.pdf
25. Boos J, Kröpill P, Klee D, Heusch P, Schimmöller L, Schaper J, et al. Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatric Radiology. 2014;44(9):1065-9. DOI: 10.1007/s00247-014-2950-z.
26. Schimmöller L, Lanzman R.S, Dietrich S, Boos J, Heusch P, Miese F, et al. Evaluation of automated attenuation-based tube potential selection in combination with organspecific dose reduction for contrast-enhanced chest CT examinations. Clinical Radiology. 2014;69(7):721-726. DOI: 10.1016/j.crad.2014.02.008.
27. Gilman MD, Kazerooni EA. Appropiate Utilization of a Low Dose Chest CT Nodule Protocol. Group Practice Quality Improvement Project. [Sitert 2016 Mai 06]. Tilgjengelig fra: http://www.rsna.org/PQI-Projects/
28. AAPM Position Statement on the Use of Bismuth Shielding for the Purpose of Dose Reduction in CT scanning. The American Association of Physicists in Medicine, Alexandria, Virginia. 2012 [Oppdatert 2012 Februar 07. Sitert 2016 Mai 06]. Tilgjengelig fra: The American
29. Flash speed. Lowest dose. Siemens Healthcare, Erlangen, Tyskland: Siemens [sitert 2017 Mars 15]. Tilgjengelig fra: http://www.radiology.vcu.edu/docs/CT_Definition_Flash.pdf
30. Kubo T, Ohno Y, Nishino M, et al. Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality. European Journal of Radiology Open. 2016 3:86-94. doi: 10.1016/j.ejro.2016.04.001.
31. Larke FJ, Kruger RL, Cagnon CH, Flynn MJ, McNitt-Gray MM, Wu X Et al. Estimated Radiation Dose Associated With Low-Dose Chest CT of Average-Size Participants in the National Lung Screening Trial. Americal Journal of Radiology. 2011;197: 1165-1169. DOI:10.2214/AJR.11.6533
32. Ono K, Hiraoka T, Ono A, Komatsu E, Shigenaga T, Takaki H Et al. Low-dose CT scan screening for lung cancer: comparison of images and radiation doses between low-dose CT and follow-up standard diagnostic CT. New York. Springer. 2013; 2:393. DOI:10.1186/2193-1801-2-393
Nedlastinger
Publisert
Hvordan referere
Utgave
Seksjon
Lisens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication, with the work after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).