Analysis of the iodine distribution map in patients with diagnosis of pulmonary embolism: Initial results
DOI:
https://doi.org/10.7577/radopen.4491Emneord (Nøkkelord):
Iodine Mapping, Pulmonary Embolism, Dual Energy, Computed TomographySammendrag
Objectives: Analysing the iodine map distribution in patients with pulmonary embolism diagnosis by Dual Energy Computed Tomography. Materials and methods: Twenty-four images of pulmonary angiotomography by dual energy computed tomography were used to determinate the presence of pulmonary thrombi and identify the perfusion defects (PDs) in the Iodine Maps. Moreover, the iodine density (mg/ml) were measured in normal lung parenchyma and lung parenchyma with PDs areas. The documentary analysis was used thought the data collection sheet and the Likert scale questionnaire. The statistic software SPSS v.25 was used. Results: Thirty-four thrombi were found (21 occlusive and 13 partials occlusive) at monochromatic images. Forty-one perfusion defects (PD) were found at Iodine Maps, these have multiple origins: pulmonary thrombi (69.23%), artifacts (17.95%) and other alterations (12.82%). Furthermore, two new thrombi (5.56%) were identified, both were occlusive and segmental level. Mean Iodine density showed statistically significant differences among normal lung parenchyma (1.65 ± 0.66 mg/ml; [0.77-2.79 mg/ ml]) and parenchyma with PD areas (0.51 ± 0.26 mg/ml; [0.12-1.02 mg/ml])(p=0.000). Mean iodine density also had statistically significant differences between parenchyma with occlusive PD and partial occlusive PD (p=0.000). Iodine Map diagnostic quality was excellent (54.17%), good (33.33%), moderate (12.50%). Conclusion: The Iodine distribution Map offers a benefit greater than 5% in the diagnosis of pulmonary embolism by Dual-Energy Computed Tomography.
Referanser
Alcocer Gamba, MA., González Juárez, F., León González, S., Castro Montes, E., & Alejandro Romero, M. (2006). Tromboembolia pulmonar, un enfoque multidisciplinario. 65(2), 88–100.
Bustos Fiore, A., González Vázquez, M., Trinidad López, C., Mera Fernández, D., & Costas Álvarez, M. (2018). Perfusion defects in pulmonary perfusion iodine maps: Causes and semiology. Radiología (English Edition), 60(4), 301–309. https://doi.org/10.1016/j.rxeng.2018.04.002
Chandra, N., Langan, DA. (2010). Gemstone Detector: Dual Energy Imaging via Fast kVp Switching. Dual Energy CT in Clinical Practice. Berlin, Heidelberg: Springer Berlin Heidelberg; p 35–41. DOI:10.1007/174_2010_35
Chien, C.-H., Shih, F.-C., Chen, C.-Y., Chen, C.-H., Wu, W.-L., & Mak, C.-W. (2019). Unenhanced multidetector computed tomography findings in acute central pulmonary embolism. BMC Medical Imaging 2019 19:1, 19(1), 1–8. https://doi.org/10.1186/S12880-019-0364-Y
Estrada Garzona, C. F., & Garzona Navas, A. F. Tromboembolismo pulmonar: Fisiopatología y diagnóstico. Revista Clínica de la Escuela de Medicina UCR –HSJD 2015; 5(2): 53–64.
Forghani, R., De Man, B., & Gupta, R. (2017). Dual-Energy Computed Tomography: Physical Principles, Approaches to Scanning. Usage, and Implementation: Part 1. Neuroimaging clinics of North America, 27(3), 371–384. https://doi.org/10.1016/j.nic.2017.03.002
Henzler T, Fink C, Schoenberg S, Schoepf J. Dual-Energy CT: Radiation Dose. Aspects. Alemania, AJR (2012), 199(5), S16-S25. DOI:10.2214/AJR.12.9210
Lu, G. M., Wu, S. Y., Yeh, B. M., & Zhang, L. J. (2010). Dual-energy computed tomography in pulmonary embolism. The British journal of radiology, 83(992), 707–718. https://doi.org/10.1259/bjr/16337436. https://doi.org/10.1259/bjr/16337436
Mc Collough, C. H., Leng, S., Yu, L., & Fletcher, J. G. (2015). Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology, 276(3), 637–653. https://doi.org/10.1148/radiol.2015142631
Mi-Jin Kang, Chang Min Park, Chang-Hyun Lee, Jin Mo Goo, Hyun Ju Lee. (2010). Dual-Energy CT: Clinical Applications in Various Pulmonary Diseases. RadioGraphics, 30:3, 685-698. https://doi.org/10.1148/rg.303095101
Monti, C. B., Zanardo, M., Cozzi, A., Schiaffino, S., Spagnolo, P., Secchi, F., De Cecco, C. N., & Sardanelli, F. (2021). Dual-energy CT performance in acute pulmonary embolism: a meta-analysis. European Radiology, 31(8), 6248–6258. https://doi.org/10.1007/s00330-020-07633-8
Noschang, Julia, Guimarães, Marcos Duarte, Teixeira, Diogo Fábio Dias, Braga, Juliana Cristina Duarte, Hochhegger, Bruno, Santana, Pablo Rydz Pinheiro, & Marchiori, Edson. (2018). Pulmonary thromboembolism: new diagnostic imaging techniques. Radiología Brasileira, 51(3), 178-186. Epub May 28, 2018. https://doi.org/10.1590/0100-3984.2017.0191
Oca Pernas, R., & Trinidad, C. ECR (2013). Pulmonary Perfusion Iodine Map with Dual Energy CT: ¿Can It Predict Gravity and Extension of Acute Pulmonary Embolism? Initial Experience. European Sociaty Radiology, C-1941. DOI:10.1594/ecr2013/C-1941
Piazza, G., & Goldhaber, S. Z. (2010). Management of submassive pulmonary embolism. Circulation, 122(11), 1124–1129. https://doi.org/10.1161/CIRCULATIONAHA.110.961136
Simón-Montero, E., Campos-Rivas, B., Guerra-García, M. M., Vírseda-Sacristán, A., Dorrego-López, M. A., & Charle-Crespo, Á. (2020). Evolución de la incidencia de la enfermedad tromboembólica venosa en Galicia durante diez años (2006-2015). Semergen, 46(5), 339–346. https://doi.org/10.1016/j.semerg.2020.04.007
Tang, C. X., Zhang, L. J., Han, Z. H., Zhou, C. S., Krazinski, A. W., Silverman, J. R., Schoepf, U. J., & Lu, G. M. (2013). Dual-energy CT based vascular iodine analysis improves sensitivityfor peripheral pulmonary artery thrombus detection: Anexperimental study in canines. European Journal of Radiology, 82(12), 2270–2278. https://doi.org/10.1016/j.ejrad.2013.06.021
Torbick, A., & Perrier, A. (2008). Guías de práctica clínica de la Sociedad Europea de Cardiología. Guías de práctica clínica sobre diagnóstico y manejo del tromboembolismo pulmonar agudo. Revista Española De Cardiología, 61(12), 1330–52. Recuperado de http://secardiologia.es/images/stories/documentos/guia-tep.pdf
Weidman EK, Plodkowski AJ, Halpenny DF, Hayes SA, Perez-Johnston R, Zheng. (2018). Dual-Energy CT Angiography for Detection of Pulmonary Emboli: Incremental Benefit of Iodine Maps. Radiology, 289(2), 546-53. DOI:10.1148/radiol.2018180594
Wiener, R. S., Schwartz, L. M., & Woloshin, S. (2013). When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found. BMJ, 347(7915). https://doi.org/10.1136/BMJ.F3368
Wu, H. W., Cheng, J. J., Li, J. Y., Yin, Y., Hua, J., & Xu, J. R. (2012). Pulmonary embolism detection and characterization through quantitative iodine-based material decomposition images with spectral computed tomography imaging. Investigative Radiology, 47(1), 85–91. https://doi.org/10.1097/RLI.0B013E31823441A1
Nedlastinger
Publisert
Hvordan referere
Utgave
Seksjon
Lisens
Opphavsrett 2021 Cecilia Muñoz, Anghelo Silencio, Isna Larico
Dette verket er lisensiert under Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication, with the work after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).