Evaluation of pulmonary computed tomography angiography protocols: A multicenter audit in Togo

Forfattere

DOI:

https://doi.org/10.7577/radopen.5571

Emneord (Nøkkelord):

pulmonary CT angiography, acquisition techniques, iodinated contrast media, iodine flow, vascular enhancement

Sammendrag

Introduction : Pulmonary CT angiography is among the most challenging protocols to execute, with significant inter-center variability in image acquisition protocols and iodinated contrast media injection. This study aimed to ascertain whether the use of iodinated contrast media (ICM) and acquisition protocols are optimized during pulmonary CT angiography procedures.

Materials and methods : This multicentric cross-sectional study, descriptive and analytical with a prospective data collection was conducted in three radiology departments in Togo. It encompassed all pulmonary CT angiography examinations carried out from March 1st to June 30th, 2023.

Results : In total, 89 patients, of which 52 were females (58.43%), were registered. The average age was 59.97±14.34 years. The average volume of injected ICM was 67.08±14.21 ml. The mean iodine dose was 0.31±0.07 gI/Kg. Catheters of 20 G (44.94%) and 18 G (43.82%) were most frequently used. The mean injection rate was 4.22±0.64 ml/s. The bolus test technique was the most employed (75.28%). The average acquisition delay was 17.77±12.26 seconds, while the average acquisition duration was 10.56±2.56 seconds. The average dose-length product (DLP) was 390.09±236.69 mGy.cm, and the average volumetric computed tomography dose index (CTDI_vol) was 12.31±11.69 mGy. Vascular enhancement was insufficient in 7.87% of cases. No statistically significant difference was found on the rate of insufficient enhancement and optimization factors. Similarly, there was no enhancement difference between bolus test and bolus tracking techniques.

Conclusion : The vast majority of examinations allowed for optimal opacification of the pulmonary arteries. However, the optimization measures for the use of iodinated contrast media are not consistently applied.

Referanser

Cohen A. Cardiologie et pathologie vasculaire. Paris: Ed. ESTEM; 1997.

Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic aspects. Circ Res. 2016;118(9):1340‑7. http://dx.doi.org/10.1161/CIRCRESAHA.115.306841

Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J. sept 2019;54(3):1901647. doi: 10.1183/13993003.01647-2019.

Keller K, Hobohm L, Ebner M, Kresoja KP, Münzel T, Konstantinides SV, et al. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur Heart J. 2020;41(4):522‑9. doi: 10.1093/eurheartj/ehz236.

Martinez Licha CR, McCurdy CM, Maldonado SM, Lee LS. Current Management of Acute Pulmonary Embolism. Ann Thorac Cardiovasc Surg. 2020;26(2):65‑71. doi: 10.5761/atcs.ra.19-00158.

Pessinaba S, Molba YD, Baragou S, Pio M, Afassinou Y, Kpélafia M, et al. L’embolie pulmonaire au centre hospitalier universitaire Campus de Lomé (Togo): étude rétrospective à propos de 51 cas. Pan Afr Med J [Internet]. 2017 [cité 21 janv 2023];27(129). Disponible sur: http://www.panafrican-med-journal.com/content/article/27/129/full/.

Stein PD, Gottschalk A, Sostman HD, Chenevert TL, Fowler SE, Goodman LR, et al. Methods of Prospective Investigation of Pulmonary Embolism Diagnosis III (PIOPED III). Semin Nucl Med. 2008;38(6):462‑70. doi: 10.1053/j.semnuclmed.2008.06.003

Gaultier AL, Mandry D, Pontana F, Morel B, Blondiaux E, Kuchcinski G, et al. Recommandations du CIRTACI sur l’optimisation de l’injection des produits de contraste iodés en tomodensitométrie – Applications oncologiques. J Imag Diagn Interv. 2020;3(3):145‑50. doi: 10.1016/j.jidi.2020.03.002

Faggioni L, Neri E, Sbragia P, Pascale R, D’Errico L, Caramella D, et al. 80-kV Pulmonary CT Angiography With 40 mL of Iodinated Contrast Material in Lean Patients: Comparison of Vascular Enhancement With Iodixanol (320 mg I/mL)and Iomeprol (400 mg I/mL). Am J Roentgenol. 2012;199(6):1220‑5. doi: 10.2214/AJR.11.8122

Kim C, Lee CW, Hong GS, Kim G, Lee KY, Kim SS. Assessment of pulmonary arterial enhancement on CT pulmonary angiography using a leg vein for contrast media administration. Medicine (Baltimore). 2017;96(49):e9099. doi: 10.2214/AJR.11.8122

Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32‑61. doi: 10.1148/radiol.10090908

Jia C fu, Zhong J, Meng X yi, Sun X xia, Yang Z qiang, Zou Y jie, et al. Image quality and diagnostic value of ultra low-voltage, ultra low-contrast coronary CT angiography. Eur Radiol. 2019;29(7):3678‑85. doi: 10.1007/s00330-019-06111-0

WHO. Obesity and overweight [Internet]. 2016. Disponible sur: : http://www.who.int/en/ news-room/fact-sheets/detail/obesity-and-overweight

Chen M, Mattar G, Abdulkarim JA. Computed tomography pulmonary angiography using a 20% reduction in contrast medium dose delivered in a multiphasic injection. World J Radiol. 2017;9(3):143. doi: 10.4329/wjr.v9.i3.143

Weininger M, Barraza JM, Kemper CA, Kalafut JF, Costello P, Schoepf UJ. Cardiothoracic CT angiography: current contrast medium delivery strategies. Am J Roentgenol. 2011;196(3):W260‑72. doi: 10.2214/AJR.10.5814

Basson DJ, Moodley H. An audit of the adequacy of contrast enhancement in CT pulmonary angiograms in a South African tertiary academic hospital setting. South Afr J Radiol. 2022;26(1):a2350. doi: 10.4102/sajr.v26i1.2350

Djian C, Nicolas C, Janoly-Dumenil A, Plauchu MM. Régulateur de débit : mise en évidence du mésusage par une enquête de pratiques et propositions d’actions correctives. 2008;27(2):65‑72.

Calesse A, Charbonnel JF. Perfusion des médicaments en milieu hospitalier : problématique des perfusions complexes. Pharm Hosp Clin. 2018;53(4):342‑53. doi: 10.1016/j.phclin.2018.08.004

B. Braun Medical. Les cathéters veineusx périphériques B. Braun: À chaque patient son cathéter sécurisé [Internet]. [cité 19 août 2023]. Disponible sur: https://www.free-med.com/cache/documents/product/brochure-catheter301624p-533.pdf

Ding S, Meystre NR, Campeanu C, Gullo G. Contrast media extravasations in patients undergoing computerized tomography scanning: a systematic review and meta-analysis of risk factors and interventions. JBI Database Syst Rev Implement Rep. 2018;16(1):87‑116. doi: 10.11124/JBISRIR-2017-003348

Schwab SA, Kuefner MA, Anders K, Adamietz B, Heinrich MC, Baigger JF, et al. Peripheral intravenous power injection of iodinated contrast media: the impact of temperature on maximum injection pressures at different cannula sizes. Acad Radiol. 2009;16(12):1502‑8. doi: 10.1016/j.acra.2009.07.026

Sum W, Ridley LJ. Recognition and management of contrast media extravasation. Australas Radiol. déc 2006;50(6):549‑52. doi: 10.1111/j.1440-1673.2006.01626.x

Wang Y, Di AH, Zhang Y. [Feasibility analysis on reducing iodine delivery rate of coronary CT angiography with 100 kVp to 60% of 120 kVp standard]. Zhonghua Yi Xue Za Zhi. 2022;102(43):3457‑62. doi: 10.3760/cma.j.cn112137-20220729-01649

Yuan W, Qu T ting, Wang H juan, Wang M yu, Qu Y, Niu G, et al. Coronary CT angiography using low iodine delivery rate and tube voltage determined by body mass index: superiority in clinical practice. Curr Med Sci. oct 2019;39(5):825‑30. doi: 10.1007/s11596-019-2112-5

Rengo M, Dharampal A, Lubbers M, Kock M, Wildberger JE, Das M, et al. Impact of iodine concentration and iodine delivery rate on contrast enhancement in coronary CT angiography: a randomized multicenter trial (CT-CON). Eur Radiol. 2019;29(11):6109‑18. doi: 10.1007/s00330-019-06196-7

Silva M, Milanese G, Cobelli R, Manna C, Rasciti E, Poggesi S, et al. CT angiography for pulmonary embolism in the emergency department: investigation of a protocol by 20 ml of high-concentration contrast medium. Radiol Med (Torino). 2020;125(2):137‑44. doi: 10.1007/s11547-019-01098-6

Kapoor A, Mahajan G, Kapoor A. Evaluation of low-kVp low-volume iodinated contrast protocol for coronary CT angiography using retrospective ECG gating. Indian J Radiol Imaging. 2021;31(4):910‑6. doi: 10.1055/s-0041-1741102

Goble EW, Abdulkarim JA. CT pulmonary angiography using a reduced volume of high-concentration iodinated contrast medium and multiphasic injection to achieve dose reduction. Clin Radiol. 2014;69(1):36‑40. doi: 10.1016/j.crad.2013.07.023

Knollmann F, Chu L, Lang JA. CT Angiography for the detection of pulmonary embolism: role of tube voltage and contrast injection rate on diagnostic confidence. Acad Radiol. 2022;29 Suppl 2:S91‑7. doi: 10.1016/j.acra.2021.01.020

Szucs-Farkas Z, Schaller C, Bensler S, Patak MA, Vock P, Schindera ST. Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol. 2009;44(12):793‑9. doi: 10.1097/RLI.0b013e3181bfe230

Çetin M. Diagnostic quality of CT pulmonary angiography in pulmonary thromboembolism: A comparison of three different kV values. Med Sci Monit. 2013;19:908‑15. doi: 10.12659/MSM.889578

Rusandu A, Ødegård A, Engh GC, Olerud HM. The use of 80 kV versus 100 kV in pulmonary CT angiography: An evaluation of the impact on radiation dose and image quality on two CT scanners. Radiography. 2019;25(1):58‑64. doi: 10.1016/j.radi.2018.10.004

Viteri-Ramírez G, García-Lallana A, Simón-Yarza I, Broncano J, Ferreira M, Pueyo JC, et al. Low radiation and low-contrast dose pulmonary CT angiography: Comparison of 80 kVp/60 ml and 100 kVp/80 ml protocols. Clin Radiol. 2012;67(9):833‑9. doi: 10.1016/j.crad.2011.11.016

Dillenseger JP, Moerschel É, Zorn C. Guide des technologies de l’imagerie médicale et de la radiothérapie: quand la théorie éclaire la pratique. 2e éd. Issy-les-Moulineaux: Elsevier Masson; 2016.

Hu X, Ma L, Zhang J, Li Z, Shen Y, Hu D. Use of pulmonary CT angiography with low tube voltage and low-iodine-concentration contrast agent to diagnose pulmonary embolism. Sci Rep. 16 oct 2017;7(1):12741. doi: 10.1038/s41598-017-13077-w

Mourits MM, Nijhof WH, Van Leuken MH, Jager GJ, Rutten MJCM. Reducing contrast medium volume and tube voltage in CT angiography of the pulmonary artery. Clin Radiol. 2016;71(6):615.e7-615.e13. doi: 10.1016/j.crad.2016.03.005

Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, et al. Low-tube-voltage, high-tube current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology. 2010;254(1):145‑53. doi: 10.1148/radiol.09090094

Nagayama Y, Oda S, Nakaura T, Tsuji A, Urata J, Furusawa M, et al. Radiation dose reduction at pediatric CT: use of low tube voltage and iterative reconstruction. RadioGraphics. 2018;38(5):1421‑40. doi: 10.1148/rg.2018180041

Foley SJ, McEntee MF, Rainford LA. Establishment of CT diagnostic reference levels in Ireland. Br J Radiol. 2012;85(1018):1390‑7. doi: 10.1259/bjr/15839549

Aberle C, Ryckx N, Treier R, Schindera S. Update of national diagnostic reference levels for adult CT in Switzerland and assessment of radiation dose reduction since 2010. Eur Radiol. 2020;30(3):1690‑700. doi: 10.1007/s00330-019-06485-1

Jafari S, Ghazikhanlu Sani K, Karimi M, Khosravi H, Goodarzi R, Pourkaveh M. Establishment of diagnostic reference levels for computed tomography scanning in Hamadan. J Biomed Phys Eng. 2020;10(6):792‑800. doi: 10.31661/jbpe.v0i0.2004-1099

Marshall T, Chen N, Nguyen E, Slattery D, Zitek T. Rethinking intravenous catheter size and location for computed tomography pulmonary angiography. West J Emerg Med. 2019;20(2):244‑9. doi: 10.5811/westjem.2018.11.40930

Kerl JM, Lehnert T, Schell B, Bodelle B, Beeres M, Jacobi V, et al. Intravenous contrast material administration at high-pitch dual-source CT pulmonary angiography: test bolus versus bolus-tracking technique. Eur J Radiol. 2012;81(10):2887‑91. doi: 10.1016/j.ejrad.2011.09.018

Sun K, Liu GR, Li YC, Han RJ, Cui LF, Ma LJ, et al. Intravenous contrast material administration at high-pitch dual-source CT coronary angiography: bolus-tracking technique with shortened time of respiratory instruction versus test bolus technique. Chin Med Sci J Chung-Kuo Hsueh Ko Hsueh Tsa Chih. 2013;27(4):225‑31. doi: 10.1016/s1001-9294(13)60006-1

Rodrigues JCL, Mathias H, Negus IS, Manghat NE, Hamilton MCK. Intravenous contrast medium administration at 128 multidetector row CT pulmonary angiography: Bolus tracking versus test bolus and the implications for diagnostic quality and effective dose. Clin Radiol. 2012;67(11):1053‑60. doi : 10.1016/j.crad.2012.02.010

Nedlastinger

Publisert

2023-11-27

Hvordan referere

Gbande, P., Tchaou, M., Dagbe, M., Bode Atcha, M., Sonhaye, L., Agoda-Koussema, L. K., & Adjenou, K. (2023). Evaluation of pulmonary computed tomography angiography protocols: A multicenter audit in Togo. Radiography Open, 9(1), 60–75. https://doi.org/10.7577/radopen.5571

Utgave

Seksjon

Artikler

Cited by