Learning Outcomes in HMD-VR: a Literature Review
DOI:
https://doi.org/10.7577/seminar.4692Keywords:
Virtual reality, Learning outcomes, Learning, Learning motivation, Learning engagement, HMD, head-mounted-displays, immersiveAbstract
While the educational technology has developed to the point that Extended Reality (XR), including immersive Virtual Reality (VR) can be used in education, the learning outcomes of these technologies in the large scale is still quite unknown. This literature review aims to take a comprehensive look to the field of immersive VR in to find out where the learning outcomes of HMD-VR stands out, and how they compare to other technologies and methods. The main result of this paper is that while HMD-based Virtual Reality Learning Environments (VRLEs) may not be superior compared to other technologies such as desktop-based VR environments regarding direct learning outcomes, a clear indication towards increased learning motivation and engagement can be seen.
References
An, B., Matteo, F., Epstein, M., & Brown, D. (2018). Comparing the performance of an immersive virtual reality and traditional desktop cultural game. In Proceedings of the 2nd International Conference on Computer-Human Interaction Research and Applications (Vol. 1, pp. 54–61). https://doi.org/10.5220/0006922800540061
Agrawal, R., Knodler, M., Fisher, D. L., & Samuel, S. (2018). Virtual reality headset training: Can it be used to improve young drivers’ latent hazard anticipation and mitigation skills. Transportation Research Record, 2672(33), 20–30. https://doi.org/10.1177/0361198118758311
Bertrand, J., Bhargava, A., Madathil, K. C., Gramopadhye, A., & Babu, S. V. (2017). The effects of presentation method and simulation fidelity on psychomotor education in a bimanual metrology training simulation. Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (pp. 59–68). https://doi.org/10.1109/3DUI.2017.7893318
Bhargava, A., Bertrand, J. W., Gramopadhye, A. K., Madathil, K. C., & Babu, S. V. (2018). Evaluating multiple levels of an interaction fidelity continuum on performance and learning in near-field training simulations. IEEE Transactions on Visualization and Computer Graphics, 24(4), 1418–1427. https://doi.org/10.1109/TVCG.2018.2794639
Bhowmick, S., Darbar, R., & Sorathia, K. (2018, September). Pragati: Design and evaluation of a mobile phone-based head mounted virtual reality interface to train community health workers in rural India. Proceedings of the NordiCHI (pp. 299–310). https://doi.org/10.1145/3240167.3240201
Boell, S.K., Cecez-Kecmanovic, D. (2015). On being ‘systematic’ in literature reviews. In: Willcocks, L.P., Sauer, C., Lacity, M.C. (eds) Formulating Research Methods for Information Systems (pp. 48-78). Palgrave Macmillan, London. https://doi.org/10.1057/9781137509888_3
Bosse, T., Gerritsen, C., de Man, J., Treur, J. (2014). Towards virtual training of emotion regulation. Brain Informatics, 1(1–4), 27–37. https://doi.org/10.1007/s40708-014-0004-9
Buttussi, F., & Chittaro, L. (2017). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063–1076. https://doi.org/10.1109/TVCG.2017.2653117
Bradley, R. and Newbutt, N. (2018), "Autism and virtual reality head-mounted displays: a state of the art systematic review", Journal of Enabling Technologies, 12 (3), 101-113. https://doi.org/10.1108/JET-01-2018-0004
Carretero, M. D. P., García, S., Moreno, A., Alcain, N., & Elorza, I. (2021). Methodology to create virtual reality assisted training courses within the Industry 4.0 vision. Multimedia Tools and Applications, 80(19), 29699–29717. https://doi.org/10.1007/s11042-021-11195-2
Chen, Y. T., Hsu, C. H., Chung, C. H., Wang, Y. S., & Babu, S. V. (2019). iVRNote: Design, creation and evaluation of an interactive note-taking interface for study and reflection in VR learning environments. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 172–180). IEEE. https://doi.org/10.1109/VR.2019.8798338
Chowdhury, T. I., Ferdous, S. M. S., & Quarles, J. (2019). VR disability simulation reduces implicit bias towards persons with disabilities. IEEE Transactions on Visualization and Computer Graphics, 27(6), 3079-3090. https://doi.org/10.1109/TVCG.2019.2958332
Chowdhury, T. I., & Quarles, J. (2021). A wheelchair locomotion interface in a VR disability simulation reduces implicit bias. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/tvcg.2021.3099115
Deci, E. L., & Ryan, R. M. (2010). Intrinsic Motivation The Corsini Encyclopedia of Psychology: JohnWiley & Sons, Inc. https://doi.org/10.1002/9780470479216.corpsy0467
Dengel, A. (2020). How important is immersion for learning in computer science replugged games? In Proceedings of the 51st ACM Technical Symposium on Computer Science Education (pp. 1165–1171). https://doi.org/10.1145/3328778.3366837
Ebert, D., Gupta, S., & Makedon, F. (2016). Ogma: A virtual reality language acquisition system. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments (pp. 1-5). https://doi.org/10.1145/2910674.2910681
Everaert, P., Opdecam, E., & Maussen, S. (2017). The relationship between motivation, learning approaches, academic performance and time spent. Accounting Education, 26(1), 78–107. https://doi.org/10.1080/09639284.2016.1274911
Feng, Z., González, V. A., Amor, R., Lovreglio, R., & Cabrera-Guerrero, G. (2018). Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Computers & Education, 127, 252–266. https://doi.org/10.1016/j.compedu.2018.09.002
Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. The International Scientific Conference eLearning and Software for Education 1(133), 10-1007.
Freina, L., Bottino, R. & Tavella, M. (2016). From e-learning to VR-learning: An example of learning in an immersive virtual world. Journal of e-Learning and Knowledge Society, 12(2).
Freitas, L. F. S., Ancioto, A. S. R., Guimarães, R. D. F. R., Martins, V. F., Dias, D. R. C., & de Paiva Guimarães, M. (2020). A virtual reality simulator to assist in memory management lectures. In Proceedings of the International Conference on Computational Science and its Applications (pp. 810–825). Springer. https://doi.org/10.1007/978-3-030-58820-5_58
Coulter, R., Saland, L., Caudell, T., Goldsmith, T. E., & Alverson, D. (2007). The effect of degree of immersion upon learning performance in virtual reality simulations for medical education. InMedicine Meets Virtual Reality, 15, 155.
Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637–651. https://doi.org/10.1016/j.tourman.2009.07.003
Grassini, S., Laumann, K., & Skogstad, M. R. (2020). The use of virtual reality alone does not promote training performance (but sense of presence does). Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.01743
Hadjipanayi, C., & Michael-Grigoriou, D. (2021). Arousing a wide range of emotions within educational virtual reality simulation about major depressive disorder affects knowledge retention. Virtual Reality, 1–17. https://doi.org/10.1007/s10055-021-00568-5
Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8(1), 1-32. https://doi.org/10.1007/s40692-020-00169-2
Hanson, K., & Shelton, B. E. (2008). Design and development of virtual reality: Analysis of challenges faced by educators. Educational Technology & Society, 11(1), 118–131.
Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014
Ijsselsteijn, W. A., & Riva, G. (2003). Being There: The experience of presence in mediated environments. In G. Riva, F. Davide, & W. A. Ijsselsteijn (Eds.), Being there: Concepts, effects and measurement of user presence in synthetic environments (pp. 4–16). IOS Press.
Holopainen, J., Lähtevänoja, A., Mattila, O., Södervik, I., Pöyry, E., & Parvinen, P. (2020). Exploring the learning outcomes with various technologies—Proposing design principles for virtual reality learning environments. In Proceedings of the 53rd Hawaii International Conference on System Sciences (pp. 12–21). https://doi.org/10.24251/HICSS.2020.004
Hsieh, T. L. (2014). Motivation matters? The relationship among different types of learning motivation, engagement behaviors and learning outcomes of undergraduate students in Taiwan. Higher Education, 68(3), 417–433. https://doi.org/10.1007/s10734-014-9720-6
Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515–1529. https://doi.org/10.1007/s10639-017-9676-0
Jung, J., & Ahn, Y. J. (2018). Effects of interface on procedural skill transfer in virtual training: Lifeboat launching operation study. Computer Animation and Virtual Worlds, 29(3-4), e1812. https://doi.org/10.1002/cav.1812
Klingenberg, S., Jørgensen, M. L., Dandanell, G., Skriver, K., Mottelson, A., & Makransky, G. (2020). Investigating the effect of teaching as a generative learning strategy when learning through desktop and immersive VR: A media and methods experiment. British Journal of Educational Technology, 51(6), 2115–2138. https://doi.org/10.1111/bjet.13029
Kuo, M. J. (2007, March). How does an online game based learning environment promote students' intrinsic motivation for learning natural science and how does it affect their learning outcomes? In Proceedings of the 2007 First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL'07) (pp. 135–142). IEEE. https://doi.org/10.1109/DIGITEL.2007.28
Kwon, C. (2019). Verification of the possibility and effectiveness of experiential learning using HMD-based immersive VR technologies. Virtual Reality, 23(1), 101–118.
https://doi.org/10.1007/s10055-018-0364-1
Lai, T. L., Lin, Y. S., Chou, C. Y., & Yueh, H. P. (2022). Evaluation of an Inquiry-Based Virtual Lab for Junior High School Science Classes. Journal of Educational Computing Research, 59(8), 1579-1600. https://doi.org/10.1177/07356331211001579
Lerner, D., Mohr, S., Schild, J., Göring, M., & Luiz, T. (2020). An immersive multi-user virtual reality for emergency simulation training: Usability study. JMIR Serious Games, 8(3), e18822. https://doi.org/10.2196/18822
Liu, R., Wang, L., Lei, J., Wang, Q., & Ren, Y. (2020). Effects of an immersive virtual reality‐based classroom on students’ learning performance in science lessons. British Journal of Educational Technology, 51(6), 2034–2049. https://doi.org/10.1111/bjet.13028
Lui, M., McEwen, R., & Mullally, M. (2020). Immersive virtual reality for supporting complex scientific knowledge: Augmenting our understanding with physiological monitoring. British Journal of Educational Technology, 51(6), 2180–2198. https://doi.org/10.1111/bjet.13022
Lähtevänoja, A., Holopainen, J., Vesisenaho, M., & Häkkinen, P. (2021). Developing design knowledge and a conceptual model for virtual reality learning environments. In Designing, Deploying, and Evaluating Virtual and Augmented Reality in Education (pp. 100-123). IGI Global. https://doi.org/10.4018/978-1-7998-5043-4.ch005
Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007
Mann, S., Furness, T., Yuan, Y., Lorio, J., & Wang, Z. (2018). All reality: virtual, augmented, mixed (X), mediated (X,Y), and multimediated reality. Retrieved August 2, 2018, from Cornell University, arXiv website: https://arxiv.org/abs/1804.08386.
Moesgaard, T., Witt, M., Fiss, J., Warming, C., Klubien, J., & Schoenau-Fog, H. (2015). Implicit and explicit information mediation in a virtual reality museum installation and its effects on retention and learning outcomes. Proceedings of the European Conference on Games-Based Learning (pp. 387–394).
Moreno, R., & Mayer, R. E. (2002). Learning science in virtual reality multimedia environments: Role of methods and media. Journal of educational psychology, 94(3), 598. https://doi.org/10.1037/0022-0663.94.3.598
Moreno, R., & Mayer, R. E. (2004). Personalized messages that promote science learning in virtual environments. Journal of educational Psychology, 96(1), 165. https://doi.org/10.1037/0022-0663.96.1.165
Morschheuser, B., Hamari, J., Koivisto, J., & Maedche, A. (2017). Gamified crowd- sourcing: Conceptualization, literature review, and future agenda. International Journal of Human-Computer Studies, 106, 26-43. https://doi.org/10.1016/j.ijhcs.2017.04.005
Neges, M., Adwernat, S., & Abramovici, M. (2018). Augmented Virtuality for maintenance training simulation under various stress conditions. Procedia Manufacturing, 19, 171–178. https://doi.org/10.1016/j.promfg.2018.01.024
Nicolaidou, I., Pissas, P., & Boglou, D. (2021). Comparing immersive virtual reality to mobile applications in foreign language learning in higher education: A quasi-experiment. Interactive Learning Environments, 1–15. https://doi.org/10.1080/10494820.2020.1870504
Osti, F., de Amicis, R., Sanchez, C. A., Tilt, A. B., Prather, E., & Liverani, A. (2020). A VR training system for learning and skills development for construction workers. Virtual Reality, 1–16. https://doi.org/10.1007/s10055-020-00470-6
Ou, K. L., Liu, Y. H., & Tarng, W. (2021). Development of a virtual ecological environment for learning the Taipei tree frog. Sustainability, 13(11), 5911. https://doi.org/10.3390/su13115911
Queiroz, A. C. M., Nascimento, A. M., Tori, R., & da Silva Leme, M. I. (2018). Using HMD-based immersive virtual environments in primary/K-12 education. In International Conference on Immersive Learning (pp. 160–173). Springer. https://doi.org/10.1007/978-3-319-93596-6_11
Parmar, D., Bertrand, J., Babu, S. V., Madathil, K., Zelaya, M., Wang, T., … Frady, K. (2016). A comparative evaluation of viewing metaphors on psychophysical skills education in an interactive virtual environment. Virtual Reality, 20(3), 141–157. https://doi.org/10.1007/s10055-016-0287-7
Pollard, K. A., Oiknine, A. H., Files, B. T., Sinatra, A. M., Patton, D., Ericson, M., … Khooshabeh, P. (2020). Level of immersion affects spatial learning in virtual environments: Results of a three-condition within-subjects study with long intersession intervals. Virtual Reality, 1–14. https://doi.org/10.1007/s10055-019-00411-y
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778
Rudolph, B., Musick, G., Wiitablake, L., Lazar, K.B., Mobley, C., Boyer, D.M., Moysey, S., Robb, A. and Babu, S.V. (2020.) Investigating the Effects of Display Fidelity of Popular Head-Mounted Displays on Spatial Updating and Learning in Virtual Reality. In International Symposium on Visual Computing (pp. 666-679). Springer, Cham. https://doi.org/10.1007/978-3-030-64556-4_52
Sathe, V., Gupta, P., Kaushik, K., Bhat, S., & Deshpande, S. (2017). Virtual reality websites (VR WEB). In Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 1, pp. 647–652). IEEE. https://doi.org/10.1109/ICECA.2017.8203619
Sebok, A., & Nystad, E. (2006). Procedural training in virtual reality: A comparison of technology types. Proceedings of NPIC&HMIT (pp. 12–16).
Sportillo, D., Paljic, A., & Ojeda, L. (2018). Get ready for automated driving using virtual reality. Accident Analysis & Prevention, 118, 102–113. https://doi.org/10.1016/j.aap.2018.06.003
Stepan, K., Zeiger, J., Hanchuk, S., Del Signore, A., Shrivastava, R., Govindaraj, S., & Iloreta, A. (2017). Immersive virtual reality as a teaching tool for neuroanatomy. International Forum of Allergy and Rhinology, 7(10), 1006–1013. https://doi.org/10.1002/alr.21986
Taylor, G. S., & Barnett, J. S. (2010, September). Training effectiveness of wearable and desktop simulator interfaces. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(27), 2267–2271. Sage. https://doi.org/10.1177/154193121005402710
Teranishi, S., & Yamagishi, Y. (2018). Educational effects of a virtual reality simulation system for constructing self-built PCs. Journal of Educational Multimedia and Hypermedia, 27(3), 411–423.
Triarisanti, R., & Purnawarman, P. (2019). The influence of interest and motivation on college students’language and art appreciation learning outcomes. International Journal of Education, 11(2), 130-135. https://doi.org/10.17509/ije.v11i2.14745
Vasalampi, K., Muotka, J., Malmberg, L. E., Aunola, K., & Lerkkanen, M. K. (2021). Intra‐individual dynamics of lesson‐specific engagement: Lagged and cross‐lagged effects from one lesson to the next. British Journal of Educational Psychology, 91(3), 997-1014. https://doi.org/10.1111/bjep.12404
Vesisenaho, M, Juntunen, M., Häkkinen, P, Pöysä-Tarhonen, J., Miakush, I., Fagerlund, J. & Parviainen, T. (2019). Virtual reality in education: Focus on the role of emotions and physiological reactivity. Journal of Virtual Worlds Research, 12(1), 1–15. https://doi.org/10.4101/jvwr.v12i1.7329
Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii. http://www.jstor.org/stable/4132319
Yu, M., Yang, M., Ku, B., & Mann, J. S. (2021). Effects of Virtual Reality Simulation Program Regarding High-risk Neonatal Infection Control on Nursing Students. Asian Nursing Research, 15(3), 189-196. https://doi.org/10.1016/j.anr.2021.03.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Antti Lähtevänoja, Mikko Vesisenaho, Kati Vasalampi, Jani Holopainen, Päivi Häkkinen
This work is licensed under a Creative Commons Attribution 4.0 International License.
Seminar.net is a fully open access journal, which means that all articles are available on the internet to all users immediately upon publication. Use and distribution in any medium is permitted, provided the author and the journal are properly credited. The journal allow reuse and remixing of content in accordance with a Creative Commons license CC-BY
- The journal allows the author(s) to hold the copyright without restrictions.
- The journal allows the author(s) to retain publishing rights without restrictions.
- Seminar.net does not charge authors for publishing with us.