How Do Teachers Use Digital Technology When They Engage Students in Mathematical Inquiry?

Authors

DOI:

https://doi.org/10.7577/njcie.6180

Keywords:

mathematics education, inquiry, digital competence, primary and secondary education, teaching observation

Abstract

This paper addresses how digital technology is used during mathematical inquiry in Norwegian secondary school following the implementation of a new national curriculum in 2020. The curriculum emphasizes inquiry-based learning, while digital technology is widely available and frequently used in Norwegian education. We analyzed 95 video-recorded lessons, subdivided into 343 fifteen-minute segments, using observation instruments that capture both digital technology use and inquiry. The results were that segments featuring advanced use of digital technology were more likely to feature mathematical inquiry. During mathematical inquiry, dynamic geometry software and spreadsheets were the most used digital technologies, while computer algebra systems and programming environments were the least used. We also conducted a qualitative analysis of the functions that digital technology had for mathematical inquiry. On the one hand, digital technology enabled mathematical inquiry by efficiently drawing graphs, either by saving labor or by enabling visual reasoning before formal learning. On the other hand, digital technology sometimes shifted mathematical inquiry towards computational approaches and use of software features. These findings highlight both the potential and limitations of digital technology during mathematical inquiry, cautioning against overly simplistic views of their impact.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aashamar, P. N., Bakken, J., & Brevik, L. M. (2021). Fri fra lærebokas tøyler: Om bruk av læreboka og andre tekster i norsk, engelsk og samfunnsfag på 9. og 10. Trinn. Norsk Pedagogisk Tidsskrift, 105(3), 296–311. https://doi.org/10.18261/issn.1504-2987-2021-03-04

Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797–810. https://doi.org/10.1007/s11858-013-0506-6

Blomhøj, M., Valero, P., & Häggström, J. (2009). The role of research in mathematics education reform work. NOMAD Nordic Studies in Mathematics Education, 14(3), Article 3. https://doi.org/10.7146/nomad.v14i3.148206

Braun, V., & and Clarke, V. (2021). One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in Psychology, 18(3), 328–352. https://doi.org/10.1080/14780887.2020.1769238

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brevik, L. M., Gudmundsdottir, G. B., Aashamar, P. N., Barreng, R. L. S., Dodou, K., Doetjes, G., Hartvigsen, K. M., Hatlevik, O. E., Mathé, N. E. H., Roe, A., Siljan, H., Stovner, R. B., & Suhr, M. L. (2024). Å jobbe utforskende på vg1 og vg2. Den enkelte lærers undervisning har mer å si enn fagenes egenart (Rapport 3, EDUCATE). Institutt for lærerutdanning og skoleforskning, Universitetet i Oslo. https://doi.org/10.5281/ZENODO.10473082

Brevik, L. M., Gudmundsdottir, G. B., Doetjes, G., & Barreng, R. L. S. (2023). Å observere fagfornyelsen i klasserommet. Observasjonsprotokoller for livsmestring, utorsking og digital kompetanse (Rapport 1, EDUCATE). Institutt for lærerutdanning og skoleforskning, Universitetet i Oslo. https://www.uv.uio.no/ils/forskning/prosjekter/educate/rapporter/educate-rapport-1-2023.pdf

Cevikbas, M., Greefrath, G., & Siller, H.-S. (2023). Advantages and challenges of using digital technologies in mathematical modelling education – a descriptive systematic literature review. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1142556

Dorier, J.-L., & Maass, K. (2014). Inquiry-Based Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 300–304). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_176

Drijvers, P. (2015). Digital Technology in Mathematics Education: Why It Works (Or Doesn’t). In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 135–151). Springer International Publishing. https://doi.org/10.1007/978-3-319-17187-6_8

Drijvers, P., & Sinclair, N. (2024). The role of digital technologies in mathematics education: Purposes and perspectives. ZDM – Mathematics Education, 56(2), 239–248. https://doi.org/10.1007/s11858-023-01535-x

Erstad, O., Kjällander, S., & Järvelä, S. (2021). Facing the challenges of ‘digital competence.’ Nordic Journal of Digital Literacy, 16(2), 77–87. https://doi.org/10.18261/issn.1891-943x-2021-02-04

Fryer, T. (2022). A critical realist approach to thematic analysis: Producing causal explanations. Journal of Critical Realism, 21(4), 365–384. https://doi.org/10.1080/14767430.2022.2076776

Greefrath, G., Hertleif, C., & Siller, H.-S. (2018). Mathematical modelling with digital tools—A quantitative study on mathematising with dynamic geometry software. ZDM, 50(1), 233–244. https://doi.org/10.1007/s11858-018-0924-6

Gudmundsdottir, G. B., Brevik, L. M., Aashamar, P. N., Barreng, R. L. S., Dodou, K., Doetjes, G., Hartvigsen, K. M., Hatlevik, O. E., Isaksen, A. R., Magnusson, C. G., Mathé, N. E. H., Roe, A., & Skarpaas, K. G. (2024). Å gi rom for variasjon og valgfrihet, mens vi venter på digital dømmekraft (Rapport 4, EDUCATE). Institutt for lærerutdanning og skoleforskning, Universitetet i Oslo.

Heid, M. K. (1988). Resequencing Skills and Concepts in Applied Calculus Using the Computer as a Tool. Journal for Research in Mathematics Education, 19(1), 3–25. https://doi.org/10.2307/749108

Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. https://doi.org/10.1016/j.compedu.2020.103897

Isaksen, R. (2024). Exploring learning in critical realism. In D. Scott (Ed.), On Learning (vol. 2): Philosophy, concepts and practices (pp. 97-126). UCL Press.

Karseth, B., Kvamme, O. A., & Ottesen, E. (2020). Fagfornyelsens læreplanverk: Politiske intensjoner, arbeidsprosesser og innhold (Rapport 1, EVA2020). Det utdanningsvitenskapelige fakultet, Universitetet i Oslo. https://www.uv.uio.no/om/aktuelt/aktuelle-saker/fakultet/2020/eva2020--delrapport---ap1-05102020.pdf

Kilhamn, C. (2022, February). Tinkering in algebra—The case of John [Conference presentation]. Twelfth Congress of the European Society for Research in Mathematics Education (CERME12), TWG03(08). Bozen-Bolzano, Italy.

Klette, K., Blikstad-Balas, M., & Roe, A. (2017). Linking instruction and student achievement. A research design for a new generation of classroom studies. Acta Didactica Norge, 11(3). https://doi.org/10.5617/adno.4729

Kure, A. E., Blikstad-Balas, M., & Brevik, L. M. (2025). Digital ambitions vs. classroom reality in Norwegian lower secondary schools: What digital competencies are students developing over time? Teaching and Teacher Education, 153. https://doi.org/10.1016/j.tate.2024.104843

Kure, A. E., Brevik, L. M., & Blikstad-Balas, M. (2023). Digital skills critical for education: Video analysis of students’ technology use in Norwegian secondary English classrooms. Journal of Computer Assisted Learning, 39(1), 269–285. https://doi.org/10.1111/jcal.12745

Leer, L. G., & Stengrundet, S. (2023, April). Geogebra og Kjernelementene. Matematikksenteret.

Munthe, E., Erstad, O., Njå, M. B., Forsström, S. E., Gilje, Ø., Amdam, S., Moltudal, S., & Hagen, S. B. (2022). Digitalisering i grunnopplæring; kunnskap, trender og framtidig kunnskapsbehov. Kunnskapssenter for utdanning. Universitetet i Stavanger.

National Committee for Research Ethics in the Social Sciences and the Humanities. (2021). Guidelines for Research Ethics in the Social Sciences and the Humanities. National Committee for Research Ethics in the Social Sciences and the Humanities. https://www.forskningsetikk.no/globalassets/dokumenter/4-publikasjoner-som-pdf/nesh-guidelines-en-2024/

Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Ran, H., Kim, N. J., & Secada, W. G. (2022). A meta-analysis on the effects of technology’s functions and roles on students’ mathematics achievement in K-12 classrooms. Journal of Computer Assisted Learning, 38(1), 258–284. https://doi.org/10.1111/jcal.12611

Rohatgi, A., Hatlevik, O. E., Gudmundsdottir, G. B., Erstad, O. A., & Björnsson, J. K. (2024). ICILS 2023: Digital kompetanse og algoritmisk tenkning hos norske niendeklassinger. Cappelen Damm Akademisk/NOASP. https://doi.org/10.23865/noasp.219

Skarpaas, K. G., & Dodou, K. (in process). Digital responsibility in the English subject. Submitted.

Stengrundet, S. (2019, January). Resonnering med GeoGebra. Matematikksenteret og Naturfagsenteret.

Stovner, R. B., Hatlevik, O. E., Aashamar, P. N., Brevik, L. M., Gudmundsdottir, G. B., & Lid, G. (2025). Å arbeide algoritmisk i matematikk: Algoritmisk tenkning og programmering på 8. Trinn, 10. Trinn og VG1 (Rapport 5, EDUCATE). Institutt for lærerutdanning og skoleforskning, Universitetet i Oslo. https://www.uv.uio.no/ils/forskning/prosjekter/educate/rapporter/stovner-et-al-(2025)-educate-rapport-5.pdf

Timotheou, S., Miliou, O., Dimitriadis, Y., Sobrino, S. V., Giannoutsou, N., Cachia, R., Monés, A. M., & Ioannou, A. (2023). Impacts of digital technologies on education and factors influencing schools’ digital capacity and transformation: A literature review. Education and Information Technologies, 28(6), 6695–6726. https://doi.org/10.1007/s10639-022-11431-8

Trgalová, J., & Tabach, M. (2023). Introduction to How Digital Resources Transform Content. In B. Pepin, G. Gueudet, & J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education (pp. 1–9). Springer. https://doi.org/10.1007/978-3-030-95060-6_11-1

Trouche, L. (2004). Managing the Complexity of Human/Machine Interactions in Computerized Learning Environments: Guiding Students’ Command Process through Instrumental Orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307. https://doi.org/10.1007/s10758-004-3468-5

Weigand, H.-G., Trgalova, J., & Tabach, M. (2024). Mathematics teaching, learning, and assessment in the digital age. ZDM – Mathematics Education, 56(4), 525–541. https://doi.org/10.1007/s11858-024-01612-9

Wilkie, K. J., & Clarke, D. M. (2016). Developing students’ functional thinking in algebra through different visualisations of a growing pattern’s structure. Mathematics Education Research Journal, 28(2), 223–243. https://doi.org/10.1007/s13394-015-0146-y

Young, J. (2017). Technology-enhanced mathematics instruction: A second-order meta-analysis of 30 years of research. Educational Research Review, 22, 19–33. https://doi.org/10.1016/j.edurev.2017.07.001

Zhang, Y., Wang, P., Jia, W, Zhang, A., & Chen, G. (2025). Dynamic visualization by GeoGebra for mathematics learning: A meta-analysis of 20 years of research. Journal of Research on Technology in Education, 57(2), 437–458. https://doi.org/10.1080/15391523.2023.2250886

Downloads

Published

2025-08-18

How to Cite

Stovner, R. B., & Hatlevik, O. E. (2025). How Do Teachers Use Digital Technology When They Engage Students in Mathematical Inquiry?. Nordic Journal of Comparative and International Education (NJCIE), 9(4). https://doi.org/10.7577/njcie.6180