Evaluation of pulmonary computed tomography angiography protocols: A multicenter audit in Togo
DOI:
https://doi.org/10.7577/radopen.5571Keywords:
pulmonary CT angiography, acquisition techniques, iodinated contrast media, iodine flow, vascular enhancementAbstract
Introduction : Pulmonary CT angiography is among the most challenging protocols to execute, with significant inter-center variability in image acquisition protocols and iodinated contrast media injection. This study aimed to ascertain whether the use of iodinated contrast media (ICM) and acquisition protocols are optimized during pulmonary CT angiography procedures.
Materials and methods : This multicentric cross-sectional study, descriptive and analytical with a prospective data collection was conducted in three radiology departments in Togo. It encompassed all pulmonary CT angiography examinations carried out from March 1st to June 30th, 2023.
Results : In total, 89 patients, of which 52 were females (58.43%), were registered. The average age was 59.97±14.34 years. The average volume of injected ICM was 67.08±14.21 ml. The mean iodine dose was 0.31±0.07 gI/Kg. Catheters of 20 G (44.94%) and 18 G (43.82%) were most frequently used. The mean injection rate was 4.22±0.64 ml/s. The bolus test technique was the most employed (75.28%). The average acquisition delay was 17.77±12.26 seconds, while the average acquisition duration was 10.56±2.56 seconds. The average dose-length product (DLP) was 390.09±236.69 mGy.cm, and the average volumetric computed tomography dose index (CTDI_vol) was 12.31±11.69 mGy. Vascular enhancement was insufficient in 7.87% of cases. No statistically significant difference was found on the rate of insufficient enhancement and optimization factors. Similarly, there was no enhancement difference between bolus test and bolus tracking techniques.
Conclusion : The vast majority of examinations allowed for optimal opacification of the pulmonary arteries. However, the optimization measures for the use of iodinated contrast media are not consistently applied.
References
Cohen A. Cardiologie et pathologie vasculaire. Paris: Ed. ESTEM; 1997.
Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic aspects. Circ Res. 2016;118(9):1340‑7. http://dx.doi.org/10.1161/CIRCRESAHA.115.306841
Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J. sept 2019;54(3):1901647. doi: 10.1183/13993003.01647-2019.
Keller K, Hobohm L, Ebner M, Kresoja KP, Münzel T, Konstantinides SV, et al. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur Heart J. 2020;41(4):522‑9. doi: 10.1093/eurheartj/ehz236.
Martinez Licha CR, McCurdy CM, Maldonado SM, Lee LS. Current Management of Acute Pulmonary Embolism. Ann Thorac Cardiovasc Surg. 2020;26(2):65‑71. doi: 10.5761/atcs.ra.19-00158.
Pessinaba S, Molba YD, Baragou S, Pio M, Afassinou Y, Kpélafia M, et al. L’embolie pulmonaire au centre hospitalier universitaire Campus de Lomé (Togo): étude rétrospective à propos de 51 cas. Pan Afr Med J [Internet]. 2017 [cité 21 janv 2023];27(129). Disponible sur: http://www.panafrican-med-journal.com/content/article/27/129/full/.
Stein PD, Gottschalk A, Sostman HD, Chenevert TL, Fowler SE, Goodman LR, et al. Methods of Prospective Investigation of Pulmonary Embolism Diagnosis III (PIOPED III). Semin Nucl Med. 2008;38(6):462‑70. doi: 10.1053/j.semnuclmed.2008.06.003
Gaultier AL, Mandry D, Pontana F, Morel B, Blondiaux E, Kuchcinski G, et al. Recommandations du CIRTACI sur l’optimisation de l’injection des produits de contraste iodés en tomodensitométrie – Applications oncologiques. J Imag Diagn Interv. 2020;3(3):145‑50. doi: 10.1016/j.jidi.2020.03.002
Faggioni L, Neri E, Sbragia P, Pascale R, D’Errico L, Caramella D, et al. 80-kV Pulmonary CT Angiography With 40 mL of Iodinated Contrast Material in Lean Patients: Comparison of Vascular Enhancement With Iodixanol (320 mg I/mL)and Iomeprol (400 mg I/mL). Am J Roentgenol. 2012;199(6):1220‑5. doi: 10.2214/AJR.11.8122
Kim C, Lee CW, Hong GS, Kim G, Lee KY, Kim SS. Assessment of pulmonary arterial enhancement on CT pulmonary angiography using a leg vein for contrast media administration. Medicine (Baltimore). 2017;96(49):e9099. doi: 10.2214/AJR.11.8122
Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32‑61. doi: 10.1148/radiol.10090908
Jia C fu, Zhong J, Meng X yi, Sun X xia, Yang Z qiang, Zou Y jie, et al. Image quality and diagnostic value of ultra low-voltage, ultra low-contrast coronary CT angiography. Eur Radiol. 2019;29(7):3678‑85. doi: 10.1007/s00330-019-06111-0
WHO. Obesity and overweight [Internet]. 2016. Disponible sur: : http://www.who.int/en/ news-room/fact-sheets/detail/obesity-and-overweight
Chen M, Mattar G, Abdulkarim JA. Computed tomography pulmonary angiography using a 20% reduction in contrast medium dose delivered in a multiphasic injection. World J Radiol. 2017;9(3):143. doi: 10.4329/wjr.v9.i3.143
Weininger M, Barraza JM, Kemper CA, Kalafut JF, Costello P, Schoepf UJ. Cardiothoracic CT angiography: current contrast medium delivery strategies. Am J Roentgenol. 2011;196(3):W260‑72. doi: 10.2214/AJR.10.5814
Basson DJ, Moodley H. An audit of the adequacy of contrast enhancement in CT pulmonary angiograms in a South African tertiary academic hospital setting. South Afr J Radiol. 2022;26(1):a2350. doi: 10.4102/sajr.v26i1.2350
Djian C, Nicolas C, Janoly-Dumenil A, Plauchu MM. Régulateur de débit : mise en évidence du mésusage par une enquête de pratiques et propositions d’actions correctives. 2008;27(2):65‑72.
Calesse A, Charbonnel JF. Perfusion des médicaments en milieu hospitalier : problématique des perfusions complexes. Pharm Hosp Clin. 2018;53(4):342‑53. doi: 10.1016/j.phclin.2018.08.004
B. Braun Medical. Les cathéters veineusx périphériques B. Braun: À chaque patient son cathéter sécurisé [Internet]. [cité 19 août 2023]. Disponible sur: https://www.free-med.com/cache/documents/product/brochure-catheter301624p-533.pdf
Ding S, Meystre NR, Campeanu C, Gullo G. Contrast media extravasations in patients undergoing computerized tomography scanning: a systematic review and meta-analysis of risk factors and interventions. JBI Database Syst Rev Implement Rep. 2018;16(1):87‑116. doi: 10.11124/JBISRIR-2017-003348
Schwab SA, Kuefner MA, Anders K, Adamietz B, Heinrich MC, Baigger JF, et al. Peripheral intravenous power injection of iodinated contrast media: the impact of temperature on maximum injection pressures at different cannula sizes. Acad Radiol. 2009;16(12):1502‑8. doi: 10.1016/j.acra.2009.07.026
Sum W, Ridley LJ. Recognition and management of contrast media extravasation. Australas Radiol. déc 2006;50(6):549‑52. doi: 10.1111/j.1440-1673.2006.01626.x
Wang Y, Di AH, Zhang Y. [Feasibility analysis on reducing iodine delivery rate of coronary CT angiography with 100 kVp to 60% of 120 kVp standard]. Zhonghua Yi Xue Za Zhi. 2022;102(43):3457‑62. doi: 10.3760/cma.j.cn112137-20220729-01649
Yuan W, Qu T ting, Wang H juan, Wang M yu, Qu Y, Niu G, et al. Coronary CT angiography using low iodine delivery rate and tube voltage determined by body mass index: superiority in clinical practice. Curr Med Sci. oct 2019;39(5):825‑30. doi: 10.1007/s11596-019-2112-5
Rengo M, Dharampal A, Lubbers M, Kock M, Wildberger JE, Das M, et al. Impact of iodine concentration and iodine delivery rate on contrast enhancement in coronary CT angiography: a randomized multicenter trial (CT-CON). Eur Radiol. 2019;29(11):6109‑18. doi: 10.1007/s00330-019-06196-7
Silva M, Milanese G, Cobelli R, Manna C, Rasciti E, Poggesi S, et al. CT angiography for pulmonary embolism in the emergency department: investigation of a protocol by 20 ml of high-concentration contrast medium. Radiol Med (Torino). 2020;125(2):137‑44. doi: 10.1007/s11547-019-01098-6
Kapoor A, Mahajan G, Kapoor A. Evaluation of low-kVp low-volume iodinated contrast protocol for coronary CT angiography using retrospective ECG gating. Indian J Radiol Imaging. 2021;31(4):910‑6. doi: 10.1055/s-0041-1741102
Goble EW, Abdulkarim JA. CT pulmonary angiography using a reduced volume of high-concentration iodinated contrast medium and multiphasic injection to achieve dose reduction. Clin Radiol. 2014;69(1):36‑40. doi: 10.1016/j.crad.2013.07.023
Knollmann F, Chu L, Lang JA. CT Angiography for the detection of pulmonary embolism: role of tube voltage and contrast injection rate on diagnostic confidence. Acad Radiol. 2022;29 Suppl 2:S91‑7. doi: 10.1016/j.acra.2021.01.020
Szucs-Farkas Z, Schaller C, Bensler S, Patak MA, Vock P, Schindera ST. Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol. 2009;44(12):793‑9. doi: 10.1097/RLI.0b013e3181bfe230
Çetin M. Diagnostic quality of CT pulmonary angiography in pulmonary thromboembolism: A comparison of three different kV values. Med Sci Monit. 2013;19:908‑15. doi: 10.12659/MSM.889578
Rusandu A, Ødegård A, Engh GC, Olerud HM. The use of 80 kV versus 100 kV in pulmonary CT angiography: An evaluation of the impact on radiation dose and image quality on two CT scanners. Radiography. 2019;25(1):58‑64. doi: 10.1016/j.radi.2018.10.004
Viteri-Ramírez G, García-Lallana A, Simón-Yarza I, Broncano J, Ferreira M, Pueyo JC, et al. Low radiation and low-contrast dose pulmonary CT angiography: Comparison of 80 kVp/60 ml and 100 kVp/80 ml protocols. Clin Radiol. 2012;67(9):833‑9. doi: 10.1016/j.crad.2011.11.016
Dillenseger JP, Moerschel É, Zorn C. Guide des technologies de l’imagerie médicale et de la radiothérapie: quand la théorie éclaire la pratique. 2e éd. Issy-les-Moulineaux: Elsevier Masson; 2016.
Hu X, Ma L, Zhang J, Li Z, Shen Y, Hu D. Use of pulmonary CT angiography with low tube voltage and low-iodine-concentration contrast agent to diagnose pulmonary embolism. Sci Rep. 16 oct 2017;7(1):12741. doi: 10.1038/s41598-017-13077-w
Mourits MM, Nijhof WH, Van Leuken MH, Jager GJ, Rutten MJCM. Reducing contrast medium volume and tube voltage in CT angiography of the pulmonary artery. Clin Radiol. 2016;71(6):615.e7-615.e13. doi: 10.1016/j.crad.2016.03.005
Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, et al. Low-tube-voltage, high-tube current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology. 2010;254(1):145‑53. doi: 10.1148/radiol.09090094
Nagayama Y, Oda S, Nakaura T, Tsuji A, Urata J, Furusawa M, et al. Radiation dose reduction at pediatric CT: use of low tube voltage and iterative reconstruction. RadioGraphics. 2018;38(5):1421‑40. doi: 10.1148/rg.2018180041
Foley SJ, McEntee MF, Rainford LA. Establishment of CT diagnostic reference levels in Ireland. Br J Radiol. 2012;85(1018):1390‑7. doi: 10.1259/bjr/15839549
Aberle C, Ryckx N, Treier R, Schindera S. Update of national diagnostic reference levels for adult CT in Switzerland and assessment of radiation dose reduction since 2010. Eur Radiol. 2020;30(3):1690‑700. doi: 10.1007/s00330-019-06485-1
Jafari S, Ghazikhanlu Sani K, Karimi M, Khosravi H, Goodarzi R, Pourkaveh M. Establishment of diagnostic reference levels for computed tomography scanning in Hamadan. J Biomed Phys Eng. 2020;10(6):792‑800. doi: 10.31661/jbpe.v0i0.2004-1099
Marshall T, Chen N, Nguyen E, Slattery D, Zitek T. Rethinking intravenous catheter size and location for computed tomography pulmonary angiography. West J Emerg Med. 2019;20(2):244‑9. doi: 10.5811/westjem.2018.11.40930
Kerl JM, Lehnert T, Schell B, Bodelle B, Beeres M, Jacobi V, et al. Intravenous contrast material administration at high-pitch dual-source CT pulmonary angiography: test bolus versus bolus-tracking technique. Eur J Radiol. 2012;81(10):2887‑91. doi: 10.1016/j.ejrad.2011.09.018
Sun K, Liu GR, Li YC, Han RJ, Cui LF, Ma LJ, et al. Intravenous contrast material administration at high-pitch dual-source CT coronary angiography: bolus-tracking technique with shortened time of respiratory instruction versus test bolus technique. Chin Med Sci J Chung-Kuo Hsueh Ko Hsueh Tsa Chih. 2013;27(4):225‑31. doi: 10.1016/s1001-9294(13)60006-1
Rodrigues JCL, Mathias H, Negus IS, Manghat NE, Hamilton MCK. Intravenous contrast medium administration at 128 multidetector row CT pulmonary angiography: Bolus tracking versus test bolus and the implications for diagnostic quality and effective dose. Clin Radiol. 2012;67(11):1053‑60. doi : 10.1016/j.crad.2012.02.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pihou Gbande, Mazamaesso Tchaou, Massaga Dagbe, Mousbaou Bode Atcha, Lantam Sonhaye, Lama Kegdigoma Agoda-Koussema, Komlanvi Adjenou
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication, with the work after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).