Interactive architecture as a therapeutic environment for people with Alzheimer’s disease, a scoping review

Authors

DOI:

https://doi.org/10.7577/formakademisk.4143

Keywords:

Assistive technology, Alzheimer’s disease, interactive architecture, therapeutic environments, virtual environment

Abstract

As the global population ages, the number of people suffering from Alzheimer’s disease (AD) increases. AD is the most common cause of dementia. In recent years interactive architecture has been developed to enhance the lives of people coping with this disease. This article presents an extensive literature review from existent research projects on how assistive technology (AT) has been used as a physical and cognitive rehabilitation aid to AD and other dementia patients. The review served to identify gaps in AT implemented place. That revealed the following findings: (1) a notable improvement in both physical and cognitive rehabilitation when integrating AT in patients’ therapeutic environments, (2) a positive effect for caregivers when patients used AT individually, and (3) a lack of clarity due to limited studies on the use of AT for daily activities in residents’ rooms at healthcare centers. However, further studies are necessary to explore the AT potential integrating strategies to promote daily activities in the residents’ rooms at healthcare centers, and the architectural factors that could affect ATs’ efficiency.

Author Biography

Heidi Elnimr, TU Wien

Msc., PhD fellow
Department of Digital Architecture
Faculty of Architecture and Planning

References

Adi, M. N. & Aljunaidy, M. M. (2020). The usefulness of using virtual reality to assess elderly and dementia friendly hospital design. IDA: International Design and Art Journal, 2(1), 137-150. http://www.idajournal.com/index.php/ida/article/view/31

Adi, M. N., Parke, B. & Friesen, K. (2015). Code plus: Physical design components for an elder friendly hospital, 2nd edition. Fraser Health Authority. https://www.researchgate.net/publication/280722860_Code_Plus_Physical_Design_Components_for_an_Elder_Friendly_Hospital_2nd_Edition

Alzheimer's association (2018). 2018 alzheimer's disease facts and figures, 14(3), 367-429. https://doi.org/10.1016/j.jalz.2018.02.001

Alzheimer's association. (2019). Technology's Evolving and Expanding Role in Dementia Care, Prevention and Alleviating Burden [Press release]. Amsterdam, Netherlands. https://www.alz.org/aaic/releases_2019/sunTECHNOLOGY-jul14.asp

Alzheimer's Disease International. (n.d.). Alzheimer's disease. https://www.alz.co.uk/info/alzheimers-disease

Alzheimer's Society (2018a, March). Alzheimer's society's view on assistive technology. https://www.alzheimers.org.uk/about-us/policy-and-influencing/what-we-think/assistive-technology

Alzheimer's Society (2018b). The memory handbook: a practical guide to living with memory problems. Alzheimer's Society.UK, 64. https://doi.org/10.1159/000491488

Alzheimer's Society (2019, April). Using technology to help with everyday life. https://www.alzheimers.org.uk/sites/default/files/2019-05/437LP-Using-technology-to-help-with-everyday-life-190520.pdf

Benya, J. R. (2010, March 29|). Controlling glare: deciphering this technical condition to create responsive lighting solutions. Architect. https://www.archlighting.com/projects/controlling-glare_o

Bowes, A. M., & Dawson, A. (2019). Designing environments for people with dementia: A systematic literature review. Emerald Publishing. https://doi.org/10.1108/9781787699717

Clay, F., Howett, D., FitzGerald, J., Fletcher, P., Chan, D., & Price, A. (2020). Use of immersive virtual reality in the assessment and treatment of alzheimer's disease: A systematic review. Journal of Alzheimer's Disease : JAD. 75(1), 23-43. (Advance online publication). https://doi.org/10.3233/JAD-191218

Corriveau Lecavalier, N., Ouellet, É., Boller, B., & Belleville, S. (2020). Use of immersive virtual reality to assess episodic memory: A validation study in older adults. Neuropsychological Rehabilitation, 30(3), 462-480. https://doi.org/10.1080/09602011.2018.1477684

Dalton, C. (2014). Myroom: A user-centred model of affective responsive architecture: myroom: A user-centred model of affective responsive architecture [PhD Thesis, University College Cork]. https://cora.ucc.ie/handle/10468/1860

Dalton, C. (2017). Including Smart Architecture in Environments for People with Dementia. In J. van Hoof, G. Demiris & E. Wouters (Eds.), Handbook of Smart Homes, Health Care and Well-Being (Vol. 9). Springer Cham. https://doi.org/10.1007/978-3-319-01583-5_57

D'Cunha, N. M., Nguyen, D., Naumovski, N., McKune, A. J., Kellett, J., Georgousopoulou, E. N., Frost, J., & Isbel, S. (2019). A mini-review of virtual reality-based interventions to promote well-being for people living with dementia and mild cognitive impairment. Gerontology, 65(4), 430-440. https://doi.org/10.1159/000500040

Duchi, F., Benalcázar, E., Huerta, M., Bermeo, J. P., Lozada, F., & Condo, S. (2019). Design of a multisensory room for elderly people with neurodegenerative diseases. In L. Lhotská, L. Sukupova, I. Lacković, & G. S. Ibbott (Eds.), IFMBE Proceedings: World Congress on Medical Physics and Biomedical Engineering 2018: June 3-8, 2018, Prague, Czech Republic. (Vol. 68/3, pp. 207-210). Springer. https://doi.org/10.1007/978-981-10-9023-3_37

Eisapour, M., Cao, S., Domenicucci, L., & Boger, J. (2018). Virtual reality exergames for people living with dementia based on exercise therapy best practices. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 528-532. https://doi.org/10.1177/1541931218621120

Fasilis, T., Patrikelis, P., Siatouni, A., Alexoudi, A., Veretzioti, A., Zachou, L., & Gatzonis, S.‑S. (2018). A pilot study and brief overview of rehabilitation via virtual environment in patients suffering from dementia. Psychiatrike = Psychiatriki, 29(1), 42-51. https://doi.org/10.22365/jpsych.2018.291.42

Fowler, S. (2008). Multisensory rooms and environments: Controlled sensory experiences for people with profound and multiple disabilities (JKP resource materials). Jessica Kingsley Publishers.

García-Betances, R. I., Arredondo Waldmeyer, M. T., Fico, G., & Cabrera-Umpiérrez, M. F. (2015). A succinct overview of virtual reality technology use in alzheimer's disease. Frontiers in Aging Neuroscience, 7, 80. https://doi.org/10.3389/fnagi.2015.00080

Goodall, G., Ciobanu, I., Taraldsen, K., Sørgaard, J., Marin, A., Draghici, R., Zamfir, M.‑V., Berteanu, M., Maetzler, W., & Serrano, J. A. (2019). The use of virtual and immersive technology in creating personalized multisensory spaces for people living with dementia (sense-garden): Protocol for a multisite before-after trial. JMIR Research Protocols, 8(9), e14096. https://doi.org/10.2196/14096

Hanford, N., & Figueiro, M. (2013). Light therapy and alzheimer's disease and related dementia: Past, present, and future. Journal of Alzheimer's Disease : JAD, 33(4), 913-922. https://doi.org/10.3233/JAD-2012-121645

Hayhurst, J. (2017, February). How augmented reality and virtual reality is being used to support people living with dementia: design challenges and future directions. In. T. Jung & M. C. tom Dieck (Eds.), Augmented Reality and Virtual Reality - Empowering Human, Place and Business. Manchester Metropolitan University https://doi.org/10.1007/978-3-319-64027-3_20

Heerema, E. (2015, March 30). Dementia effects on activities of daily living (adls). Verywell Health. https://www.verywellhealth.com/dementia-daily-living-adls-97635

Hofmann, M., Rösler, A., Schwarz, W., Müller-Spahn, F., Kräuchi, K., Hock, C., & Seifritz, E. (2003). Interactive computer-training as a therapeutic tool in alzheimer's disease. Comprehensive Psychiatry, 44(3), 213-219. https://doi.org/10.1016/S0010-440X(03)00006-3

Jiang, C.‑F., & Li, Y.‑S. (2007). Virtual hospital--a computer-aided platform to evaluate the sense of direction. Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007, 2361-2364. https://doi.org/10.1109/IEMBS.2007.4352801

Kenfack Ngankam, H., Pigot, H., Lorrain, D., Viens, I., & Giroux, S. (2020). Context awareness architecture for ambient-assisted living applications: Case study of nighttime wandering. Journal of Rehabilitation and Assistive Technologies Engineering, 7, 2055668319887864. https://doi.org/10.1177/2055668319887864

Konis, K., Mack, W. J., & Schneider, E. L. (2018). Pilot study to examine the effects of indoor daylight exposure on depression and other neuropsychiatric symptoms in people living with dementia in long-term care communities. Clinical Interventions in Aging, 13, 1071-1077. https://doi.org/10.2147/CIA.S165224

Koumakis, L., Chatzaki, C., Kazantzaki, E., Maniadi, E., & Tsiknakis, M. (2019). Dementia care frameworks and assistive technologies for their implementation: A review. IEEE Reviews in Biomedical Engineering, 12, 4-18. https://doi.org/10.1109/RBME.2019.2892614

Malkin, J. (1992). Hospital interior architecture: Creating healing environments for special patient populations: Creating healing environments for special patient populations. Van Nostrand Reinhold.

Manera, V., Chapoulie, E., Bourgeois, J., Guerchouche, R., David, R., Ondrej, J., Drettakis, G., & Robert, P. (2016). A feasibility study with image-based rendered virtual reality in patients with mild cognitive impairment and dementia. PloS One, 11(3), e0151487. https://doi.org/10.1371/journal.pone.0151487

Marquardt, G., Bueter, K., & Motzek, T. (2014). Impact of the design of the built environment on people with dementia: An evidence-based review. HERD, 8(1), 127-157. https://doi.org/10.1177/193758671400800111

McCullough, M. (2005). Digital ground: Architecture, pervasive computing, and environmental knowing (1st paperback ed.). MIT Press.

Montana, J. I., Tuena, C., Serino, S., Cipresso, P., & Riva, G. (2019). Neurorehabilitation of spatial memory using virtual environments: A systematic review. Journal of Clinical Medicine, 8(10). https://doi.org/10.3390/jcm8101516

Moyle, W., Jones, C., Dwan, T., & Petrovich, T. (2018). Effectiveness of a virtual reality forest on people with dementia: A mixed methods pilot study. The Gerontologist, 58(3), 478-487. https://doi.org/10.1093/geront/gnw270

Mrakic-Sposta, S., Di Santo, S. G., Franchini, F., Arlati, S., Zangiacomi, A., Greci, L., Moretti, S., Jesuthasan, N., Marzorati, M., Rizzo, G., Sacco, M., & Vezzoli, A. (2018). Effects of combined physical and cognitive virtual reality-based training on cognitive impairment and oxidative stress in mci patients: A pilot study. Frontiers in Aging Neuroscience, 10, 282. https://doi.org/10.3389/fnagi.2018.00282

National Institutes of Health, National Institute on Aging. (2017, October 10). What happens to the brain in alzheimer's disease? https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease

Nesbitt, K., & Nalivaiko, E. (2020). Cybersickness. In N. Lee (Ed.), Encyclopedia of computer graphics and games (pp. 1-6). Springer International Publishing; Imprint: Springer. https://doi.org/10.1007/978-3-319-08234-9_252-1

Optale, G., Urgesi, C., Busato, V., Marin, S., Piron, L., Priftis, K., Gamberini, L., Capodieci, S., & Bordin, A. (2010). Controlling memory impairment in elderly adults using virtual reality memory training: A randomized controlled pilot study. Neurorehabilitation and Neural Repair, 24(4), 348-357. https://doi.org/10.1177/1545968309353328

Pengas, G., Williams, G. B., Acosta-Cabronero, J., Ash, T. W. J., Hong, Y. T., Izquierdo-Garcia, D., Fryer, T. D., Hodges, J. R., & Nestor, P. J. (2012). The relationship of topographical memory performance to regional neurodegeneration in alzheimer's disease. Frontiers in Aging Neuroscience, 4, 17. https://doi.org/10.3389/fnagi.2012.00017

Pot-Kolder, R., Veling, W., Counotte, J., & van der Gaag, M. (2018). Anxiety partially mediates cybersickness symptoms in immersive virtual reality environments. Cyberpsychology, Behavior and Social Networking, 21(3), 187-193. https://doi.org/10.1089/cyber.2017.0082

Sánchez, A., Millán-Calenti, J. C., Lorenzo-López, L., & Maseda, A. (2013). Multisensory stimulation for people with dementia: A review of the literature. American Journal of Alzheimer's Disease and Other Dementias, 28(1), 7-14. https://doi.org/10.1177/1533317512466693

Smith, R. & Watkins, N. (2016). Therapeutic environments. WBDG. https://www.wbdg.org/resources/therapeutic-environments

Strong, J. (2020). Immersive virtual reality and persons with dementia: A literature review. Journal of Gerontological Social Work, 63(3), 209-226. https://doi.org/10.1080/01634372.2020.1733726

Topo, P. (2009). Dementia, design and technology: Time to get involved. (Assistive technology research series: vol. 24). IOS Press.

Torrington, J. M., & Tregenza, P. R. (2007). Lighting for people with dementia. Lighting Research & Technology, 39(1), 81-97. https://doi.org/10.1177/1365782806074484

van Hoof, J., Demiris, G., & Wouters, E. J. (Eds.). (2017). Handbook of Smart Homes, Health Care and Well-Being. Springer International Publishing. https://doi.org/10.1007/978-3-319-01583-5

White, P. J. F., & Moussavi, Z. (2016). Neurocognitive treatment for a patient with alzheimer's disease using a virtual reality navigational environment. Journal of Experimental Neuroscience, 10, 129-135. https://doi.org/10.4137/JEN.S40827

Yates, L., Csipke, E., Moniz-Cook, E., Leung, P., Walton, H., Charlesworth, G., Spector, A., Hogervorst, E., Mountain, G., & Orrell, M. (2019). The development of the promoting independence in dementia (pride) intervention to enhance independence in dementia. Clinical Interventions in Aging, 14, 1615-1630. https://doi.org/10.2147/CIA.S214367

Zeisel, J. (2000). Environmental design effects on alzheimer symptoms in long-term care residences. World Hospitals and Health Services : The Official Journal of the International Hospital Federation, 36(3), 27-31, 36, 38. https://www.researchgate.net/publication/12056398_Environmental_design_effects_on_Alzheimer_symptoms_in_long-term_care_residences

Zeisel, J. (2003, July). Evidence-based design in coordinated health treatment. In Design & Health World Congress & Exhibition (WCDH 2003, Montreal). The International Academy for Design and Health. https://www.brikbase.org/sites/default/files/19John-Zeisel-WCDH-2003_0.pdf

3d medical figure with brain highlighted Free Photo

Downloads

Published

2021-10-19

How to Cite

Elnimr, H. (2021). Interactive architecture as a therapeutic environment for people with Alzheimer’s disease, a scoping review. FormAkademisk, 14(1). https://doi.org/10.7577/formakademisk.4143

Issue

Section

Articles

Cited by